Bernstein polynomials of matrices

Authors

  • Donatella Occorsio Universita degli Studi della Basilicata, Dipartamento di Matematica, Potenza, Italy

Abstract

Not available.

Downloads

Download data is not yet available.

References

R. A. De Vore, The Approximation of Continuous Functions by Positive Linear Operators, Springer, 1972.

G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, 1988.

P. Lancaster, M. Tismenetsky, The Theory of Matrices, Second Edidtion, Academic Press, Inc. Harcourt Brace Javanovich, Publishers 1985.

G. G. Lorentz, Bernstein Polynomials, Unviersity of Toronto Press, Toronto 1953.

P. C. Sikkema, Der wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numer. Math. 3 (1961), 107-116, https://doi.org/10.1007/bf01386008

D. D. Stancu, Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comp., 17, (1963), 270-278, https://doi.org/10.1090/s0025-5718-1963-0179524-6

D. D. Stancu, Application of divided differences to the study of monotonicity of the derivative of the sequences of Bernstein polynomials, Calcolo 16, (1979), 431-445, https://doi.org/10.1007/bf02576641

Downloads

Published

1993-02-01

Issue

Section

Articles

How to Cite

Occorsio, D. (1993). Bernstein polynomials of matrices. Rev. Anal. Numér. Théor. Approx., 22(1), 73-82. https://ictp.acad.ro/jnaat/journal/article/view/1993-vol22-no1-art7