Konvergenzordnung Einer Folge Positiver Linearer Operatoren

Convergence order of a sequence of positive linear operators

Authors

  • Werner Haussmann Gesamthochschule Duisburg, Institut fur Mathematik, Germany
  • Hans-Bernd Knoop Gesamthochschule Duisburg, Institut fur Mathematick, Germany
Abstract views: 306

Abstract

Not available.

Downloads

Download data is not yet available.

References

Amelkovič, V. G., Die Ordung der Annäherung stetiger Funktionen mit Fejér-Hermite-Interpolationspolynomen. Polytechn. Inst. Odessa, Naucnyje Sapiski 34, 70-77, 1961 (Russisch).

Knoop, H.-B., Eine Folge positiver Interpolationsoperatoren. (German) Acta Math. Acad. Sci. Hungar. 27 (1976), no. 3-4, 263-265, MR0417637, https://doi.org/10.1007/bf01902103

Moldovan, Elena, Observations sur certains procédés d'interpolation généralisés. (Romanian. Russian, French summary) Acad. Repub. Pop. Romîne. Bul. Şti. Secţ. Şti. Mat. Fiz. 6, (1954). 477-482, MR0067242.

Shisha, O., Mond, B., The rapidity of convergence of the Hermite-Fejér approximation to functions of one or several variables. Proc. Amer. Math. Soc. 16 1965 1269-1276, MR0198062, https://doi.org/10.1090/s0002-9939-1965-0198062-1

Stancu, D. D., Sulla dimostrazione del teorema di Weierstrass. (Romanian) Bul. Inst. Politehn. Iaşi (N.S.) 5 (9) 1959 no. 1-2, 47-50, MR0123124.

Vértesi, P. O. H., On the convergence of Hermite-Fejér interpolation. Acta Math. Acad. Sci. Hungar. 22 (1971/72), 151-158, MR0299991, https://doi.org/10.1007/bf01896002

Downloads

Published

1975-08-01

Issue

Section

Articles

How to Cite

Haussmann, W., & Knoop, H.-B. (1975). Konvergenzordnung Einer Folge Positiver Linearer Operatoren: Convergence order of a sequence of positive linear operators. Anal. Numér. Théor. Approx., 4(2), 123-130. https://ictp.acad.ro/jnaat/journal/article/view/1975-vol4-no2-art2