Konvergenzordnung Einer Folge Positiver Linearer Operatoren
Convergence order of a sequence of positive linear operators
Abstract
Not available.Downloads
References
Amelkovič, V. G., Die Ordung der Annäherung stetiger Funktionen mit Fejér-Hermite-Interpolationspolynomen. Polytechn. Inst. Odessa, Naucnyje Sapiski 34, 70-77, 1961 (Russisch).
Knoop, H.-B., Eine Folge positiver Interpolationsoperatoren. (German) Acta Math. Acad. Sci. Hungar. 27 (1976), no. 3-4, 263-265, MR0417637, https://doi.org/10.1007/bf01902103
Moldovan, Elena, Observations sur certains procédés d'interpolation généralisés. (Romanian. Russian, French summary) Acad. Repub. Pop. Romîne. Bul. Şti. Secţ. Şti. Mat. Fiz. 6, (1954). 477-482, MR0067242.
Shisha, O., Mond, B., The rapidity of convergence of the Hermite-Fejér approximation to functions of one or several variables. Proc. Amer. Math. Soc. 16 1965 1269-1276, MR0198062, https://doi.org/10.1090/s0002-9939-1965-0198062-1
Stancu, D. D., Sulla dimostrazione del teorema di Weierstrass. (Romanian) Bul. Inst. Politehn. Iaşi (N.S.) 5 (9) 1959 no. 1-2, 47-50, MR0123124.
Vértesi, P. O. H., On the convergence of Hermite-Fejér interpolation. Acta Math. Acad. Sci. Hungar. 22 (1971/72), 151-158, MR0299991, https://doi.org/10.1007/bf01896002
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.