On the solutions of quasi-linear inclusions of evolution

Authors

  • Marian Mureşan "Babeş-Bolyai" University, Cluj-Napoca, Romania
  • Cornelia Mureşan "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 176

Abstract

Not available.

Downloads

Download data is not yet available.

References

Anguraj, A., Balachandran, K., Existence of solutions of nonlinear differential inclusions, Mem. Fac. Sci. Kôchi Univ. Ser. A Math. 13 (1992), pp. 61-66.

Aubin, J. P., Cellina, A., Differential Inclusions, Springer, Berlin, 1984.

Avramescu, C., Teoreme de punct fix pentru aplicaţii contractante definite pe spaţii uniforme, An. Univ. Craiova Mat. Fiz.-Chim. Ser. a IV-a I (1970), pp. 63-67. (Romanian).

Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Ed. Academiei Bucureşti, Noordhoff-Leyden, 1976.

Castaing, C., Valadier, M., Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.

Deimling, K., Multivalued Differential Equations, W. de Gruyter, Berlin, 1992.

Diestel, J., Uhl, L., Vector Mesures, Amer. Math. Soc., Providence, 1977.

Filippov, A. F., Classical solutions of diffrential equations with multivalued right-hand side, Vestnik Moskov, Univ. Ser. I Mat. Mekh., 3 (1967), pp. 16-26. (Russian).

-, Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control, 5 (1967), pp. 609-621.

-, Differential Equations with Discontinuous Righthand Side, Kluwer, Dordrecht, 1988.

Frankowska, H., A priori estimates for operational differential inclusions, J. Differential Equations, 84 (1990), pp. 100-128.

Hiai, F; Umegaki, H., Integrals, conditional espectations and martingales of multivalued functions, J. Multivariate Anal., 7 (1977), pp. 149-182.

Hille, E., Functional analysis and Semi-groups, Amer. Math. Soc., New York, 1948.

Himmelberg, C. J., Measurable relations, Fund. Math., 87 (1975), pp. 53-72.

Istrăţescu, V.I., Introducere în teoria punctelor fixe, Ed. Academiei RSR, Bucureşti, 1973 (Romanian).

Klein, E., Thompson, A.C., Theory of Correspondences, Wiley, New York, 1984.

Kobayasi, K., Sanekata, N., A method of iteration for quasi-linear evolution equations in nonreflexive Banach spaces, Hiroshima Math. J., 19 (1989), pp. 521-540.

Kuratowski, K., Ryll-Nardzewski, C., A genral theorem on selectors, Bull. Polish. Acad. Sci. Math., 13 (1965), pp. 397-403.

Mitrinovic, D.S., Pečarič, J. E., Fink, A.M., Inequalities Involving Functions and their Integrals and Derivativees, Kluwer, Dordrecht, 1991.

Mureşan, M., On quasi-linear inclusions of evolution, Preprint. "Babeş-Bolyai" Univ. Cluj-Napoca, 7 (1993), pp. 29-46.

-, On a boundary value problem for quasi-linear differential inclusions of evolution, Collect. Math., 45 (1994), 2, pp. 165-175.

-, Qualitative properties of solutions to quasi-linear inclusions, I., Pure Math. Appl., 5 (1994), pp. 331-353.

-, Qualitative properties of solutions to quasi-linear inclusions, II., to appeare, Pure Math. Appl. 6 (1995).

Nowak, A., Random differential inclusions; Measurable selections approach, Ann. Polon. Math., 49 (1989), pp. 291-296.

Papageorgiou, N.S., On measurable multifunctions with applications to random multivalued equations, Math. Japon 32 (1987), pp. 437-464.

-, On quasilinear differential inclusions in Banach spaces, Bull. Polish. Acad. Sci., 35 (1987), pp. 407-416.

-, Boundary value problems for evolution inclusions, Comment. Math. Univ. Carolin., 29 (1988), pp. 355-363.

Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York-Berlin-Heidelberg, 1983.

Pianigiani, G., On the fundamental theory of multivalued differential equations, J. Differential Equation 25 (1977), pp. 30-38.

Qi Ji, Zhu, On the solution set of differential inclusions in Banach spaces, J. Differential Equations, 93 (1991), pp. 213-237.

Radström, H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3 (1952), pp. 165-169.

Rudin, W., Functional analysis, McGraw-Hill, New York, 1973.

Rus., A. I., Principii şi aplicaţii ale teoriei punctului fix, Dacia, Cluj-Napoca, 1979. (Romanian).

Sanekata, N., Abstract quasi-linear equations of evolution in nonreflexive Banach spaces. Hiroshima Math. J., 19 (1989), pp. 109-139.

Schaeffer, H.H., Topological vector spaces, Macmillan, New York, 1966.

Šeda, V., Some fixed point theorems for multivalued mappings, Czechoslovak Math. J., 39 (114) (1989), pp. 147-164.

Tolstonogov, A.A., Differential Inclusions in Banach Spaces, Nauka, Novosibirsk, 1986. (Russian).

-, On the solutions of evolution inclusions, I. Sibirs. Math. Zh., 33(1992), no.3, pp. 161-172. (Russian).

Trenoguine, V., Analyse Functionelle, Mir, Moscou, 1985.

Tsaliuk, V.Z., On the superpositionally multifunctions, Mat. Zametki, 43 (1988), pp. 98-102. (Russian).

Wagner, D.H., Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), pp. 859-903.

Zygmunt, W., On superpositionally measurable semi-Carathéodory multifunctions, Comment. Math. Univ. Carolin., 33 (1992), no.1, pp. 73-77.

Downloads

Published

1996-08-01

How to Cite

Mureşan, M., & Mureşan, C. (1996). On the solutions of quasi-linear inclusions of evolution. Rev. Anal. Numér. Théor. Approx., 25(1), 153–171. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1996-vol25-nos1-2-art16

Issue

Section

Articles