Mean-value formulae for integrals involving generalized orthogonal polynomials
Abstract
Not available.Downloads
References
S. Bernstein , Sur les polynômes orthogonaux relatifs à un segment fini, J. Math. Pures Appl. (9) 9 (1930), pp.127-177.
L. Chakalov, General quadrature formulae of Gaussian type, Bulgar. Akad. Nauk. lzv. Mat. Inst. 1 (1954), pp. 67-84.
N. Cioranescu, Une généralisation de la première formule de Ia moyenne et des polynômes de Tchebychev, C.R. Acad. Sci. Paris 206 (1938), pp. 1182-1784.
. W. Gautschi, A Survey of Gauss-ChristoffeI Quadrature Formulae, In: E. B. Christoffel, P. L. Butzer, F. Fehér, (Eds), Birkhäuser, Basel, 1981, pp. pp. 72-147, https://doi.org/10.1007/978-3-0348-5452-8_6
A. Ghizzetti and A. Ossicinii, Guadrature Formulae, ISNM 3, Birkhäuser, Basel, 1970.
A. Ghizzetti and A. Ossicini, Generalízzazione dei polinomi s-orthogonali Atti Acad. Sci. Torino 109 (1974/1975), pp. 371-379.
A. Ghizzetti and A. Oossicini, Sulle esistenza e unicità delle formule di quadratura gaussiana, Rend. Mat. (6) 8 (1975), pp.1-15.
L. Gori, On the Behaviour oftlheZzeros of s-Orthogonal Polynonials, ln: on orthogonal Polynomials and Their Applications, Monogr. Acad. Ciecias, Zaragoza, 1988, pp.71-85.
L. Gori and E. Santi, On the convergence of Turán type rules for Cauchy principal value integrals, Calcolo 28 (1991), pp. 21-35, https://doi.org/10.1007/bf02575867
L. Gori, M. L. Lo Cascio and G.V. Milanović, The σ-Orthogonal Polynomials: A Method of construction, In: Orthogonal Polynonials and Their Applications, C. Brezinski', L. Gori, A. Ronveaux, (Eds), Baltzer AG Sci. Publ., IMACS, 1991, pp. 281-285.
L. Gori and C. A. Micchelli, On weight functions which admit explicit Gauss-Turán quadrature formulas, Math. Comput. 69 (1996), pp. 1567-1581, https://doi.org/10.1090/s0025-5718-96-00769-7
D. Jackson, On the method of least mth powers for a set of so,i;tamepis equations, Ann. Math. 12 (1924), pp.184-252, https://doi.org/10.2307/1967908
A. Lupaş, Teoreme de medie pentru coeficienţii Fourier-Jacobi, Rev. Anal. Numer. Theorie Approximation 3 (1974), pp. 79-84.
G. V. Milovanović, Construction of s-Orthogonal Polynomials and Turán Quadratures, In:Numer. Methods and Approx. Theory III (Niš 1987), D. V. Milovanović, (Ed.), Univ, Niš, 1988, pp. 311-388.
A. Morelli and and A. Verna, Alcune proprietà degli zeri dei polinomi σ-ortogonali, Rend. Mat. Appt.1 (1987), pp.43-52.
A. Ossicini and F. Rosati, Sulla convergenza dei funzionali ipergaussiani, Rend. Mat.6 (1978), pp. 97-108.
T. Popoviciu, Sur la distribution des zéros de certains polynômes minimisants, Bull. Acad. Roumaine 16 (1934), pp. 214-217.
T. Popoviciu, On a generalizalion of the numerical integration formula of Gauss, Acad. R. P. Române, Iaşi, St. cerc, şt. 6 (1955), pp.29-57.
T, Popoviciu, .Sur le reste dans certaines formules linéaires d'approximation de I'analyse, Mathematica (Cluj) 1 (24) (1959), pp.95-142.
D. D. Stancu, Sur quelques formules générales de quadrature du type Gauss-Christoffel, Mathematica (Cluj) I (24) (1959), pp.167-182.
D.D. Stancu, On Hermite's osculatory interpolation formula and on some generalizations of it, Mathematica (Cluj) 8 (31) (1966), pp. 373-391.
D. D. Stancu and M. R. Occorsio, Mean-value Formulae for Integrals Obtained by Using Gaussian-type Quadratures, Suppl. Rend. Circolo Matematico di Palermo, Ser II, No. 33, 1993, pp. 463-478.
G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23 (1939), New York.
P. Turán, On the theory of the mechanical quadrature, Acta Sci. Math. Szeged 12 (1950), pp. 30-37.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.