Generalized Stancu-Pólya curves
Abstract
Not available.Downloads
References
P.J. Barry and R.N. Goldman, What is the Natural Generalization of a Béizer Curve? Math. Meth. in C.A.G.D., T. Lyche and L. Shumaker (Eds), Academic Press, 1989, pp. 71-85, https://doi.org/10.1016/b978-0-12-460515-2.50010-x
P.J. Barry and R.N. Golodman, Interpolation and approximation of curves and surfaces using Pólya polynomials, Graphical Models and Image Processing 53 (1991), pp. 137-148, https://doi.org/10.1016/1049-9652(91)90057-q
R.M. Bartles, J.C. Beatty and B.A. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling, Morgan Kaufman, Los Altos (Ca), 1987.
G. Farin, Curves and Surfaces for Computer Aided Geometric Design. A Practical Guide, Academic Press, 1990.
G. Farin and P.J. Barry, Link between Bézier and Lagrange curve and surface schemes, Computer Aided Design 18 (1986), pp. 525-528, https://doi.org/10.1016/0010-4485(86)90039-4
R.N. Goldman, Pólya's urn model and computer aided geometric design, Siam J. alg. Disc. Meth 6(1985), pp. 1-28, https://doi.org/10.1137/0606001
L.M. Kocic, D. Occorsio and A.C. Simoncelli, Comparison between two generalizations of Bézier curves (to appear in Proceedings "D.S. Mitrinovic Conference" (Niš, 1996)).
G. Matroianni and M.T. Occorsio, Una generalizzazione dell'operatore di Bernstein, Rend. dell'Accad. di Scienze Fis. e Mat. Napoli (Serie IV) 44 (1977), pp. 151-169.
G. Mastroianni and M.R. Occorsio, A new operator of Bernstein type, Rev. Anal. Numér. Theorie Approximation (Cluj-Napoca) 16 (1987), pp. 55-63.
G. Mastroianni and M. R. Occorsio, Una generalizzazione dell'operatore di Stancu, Rend. dell'Accad. di Scienze Fis. e Mat. Napoli (Serie IV).
D. Occorsio and A.C. Simoncelli, How to go from Bézier to Lagrange curves by means of generalized Bézier curves. Facta Universitatis - Ser. Math. Inform. (Niš), 11 (1996), pp. 101-111.
A.C. Simoncelli, About efficient evaluation of Bm,k(f;t), Rend. Accad. Scienze Fisiche e Matematiche Napoli, 61 (1994), pp. 189-201.
D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine, Math. Pures et Appl. 13 (1968), pp. 1179-1184.
D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo (1983), pp. 211-229, https://doi.org/10.1007/bf02575593
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.