Approximation by boolean sums of positive linear operators VI: monotone approximation and global smoothness preservation

Authors

  • H. H. Gonska Oestrich-Winkel, Germany
  • Jia -Ding Cao Shanghai, China

Keywords:

Boolean sum, positive linear operator, monotone approximation, global smoothness preservation, Telyakovskii-type inequality, Timan-type inequality, DeVore-Gopengauz-type inequality, Dzjadyk-type inequality
Abstract views: 171

Abstract

This is a continuation of a series of articles concerning the properties of the Boolean sum of a (positive) linear operator and Lagrange interpolation of first order. Pointwise estimates play a central role.

Downloads

Download data is not yet available.

References

G.A. Anastassiou, C. Cottin, H.H. Gonska, Global smoothness of aproximating functions Analysis, 11 (1991), 43-47, https://doi.org/10.1524/anly.1991.11.1.43

G.A. Anastassiou, H.H. Gonska, On stochastic global smoothness. Submitted for publication.

R.K. Beaton, Bell-shape preserving convolution operators. Tehnical Report, Dept of Math. University of Otago, Dunedin, New Zealand, 1978.

R. Beatson, Joint approximation of a function and its derivatives. In: Approximation Theory III (Proc. Int. Sympos. Austin 1980, ed by E.W. Cheney), 199-206, New York, Academic Press, 1980, https://doi.org/10.1016/0021-9045(80)90074-x

A. Boos, Jia-ding Cao, H.H. Gonska, Approximation by Boolean sums of positive linear operators V: on the constants in DeVore-Gopengauz-type inequalities. Submitted for publication. Temporary reference: Schriftenreihe des Instituts für Angewandte Informatik, SIAI-EBS-4-93, European Business School, 1993, https://doi.org/10.1007/bf02575858

P.L. Butzer, R.J. Nesse, Fourier analysis and Approximation (vol.I). Basel and Stuttgart, Birkhäuser, 1971, https://doi.org/10.1007/978-3-0348-7448-9

Jia-ding Cao, Generalizations of Timan theorem, Lehnhoff theorem and Telyakovskiĭ theorem (Chinese). Keuxe Tongbao, 15 (1986), 1132-1135. Science Bulletin (English Edition), 32 (1987), 1225-1229.

Jia-ding Cao, Generalizations of Timan's theorem, Lehnhoff's theorem and Telyakovskiĭ's theorem. Schriftenreihe des Fachbereichs Mathematik, SM-DU-106, Univeristät Duisburg, 1986.

Jia-ding Cao, H.H. Gonska, Approximation by Boolean sums of positive linear operators. Rend. mat., 6(9186), 525-546.

Jia-ding Cao, H.H. Gonska, Approximation by Boolean sums of positive linear operators II: Gopengauz-type estimates. J. Approximation Theory, 57(1989), 77-89, https://doi.org/10.1016/0021-9045(89)90085-3

Jia-ding Cao, H.H. Gonska, Approximation by Boolean sums of positive linear operators III: Estimates for some numerical approximation schemes, Numer. Funct. Anal. Optim., 10 (1989), 643-672, https://doi.org/10.1080/01630568908816324

Jia-ding Cao, H.H. Gonska, Approximation by Boolean sums of linear operators: Telyakovskiĭ-type estimates. Bull. Austral. Math. Soc., 42(1990), 253-266, https://doi.org/10.1017/s0004972700028410

Jia-ding Cao, H.H. Gonska, Approximation by Boolean sums of positive linear operators IV: shape preservation by DeVore-Gopengauz-type approximants. Schriftenreihe des Instituts für Angewandte Informatik, SIAI-EBS-2-92, European Business School, 1992.

Jia-ding Cao, H.H. Gonska, Pointwise estimates for higher order convexity preserving polynomial approximation. To appear in "J. Austral. Math. Soc. Ser. B". Temporary references:Schriftenreihe des Institutes für Angewandte Informatik, SIAI-EBS-2-93, European Business School, 1993, https://doi.org/10.1017/s0334270000010365

B.L. Chalmers, G.D. Taylor, Uniform approximation with constraints, Jahresber. Deutsch. Math.-Verein., 81 (1979), 49-86.

C. Cottin, H.H. Gonska, Simultaneous approximation and global smoothness preservation. To appear in "Rend. Circ. Mat. Palermo", Temporary reference: Schriftenreihe des Instituts für Angewandte Informatik, SIAI-EBS-1-93, European Business School, 1993.

R.A DeVore, The Approximation of Continuous Functions by Positive Linear Operators. Berlin-Heidelberg-New York, Springer, 1972, https://doi.org/10.1007/bfb0059493

R.A. DeVore, Xiang-ming Yu, Pointwise estimates for monotone polynomial approximation. Constructive Approximation, 1 (1985), 323-331, https://doi.org/10.1007/bf01890039

Gavrea, On Gonska's problem concerning approximation by algebraic polynomials. Manuscript, 1992.

Gavrea, Approximation by positive linear operators. To appear in Revue Anal. Numér. Théor. Approx.

Görlich, E.L. Stark, Über beste Konstanten und asymptotische Entwichlungen positiver Faltungsintegrale und deren Zusammenhang mit dem Saturationsproblem. Jahresber. Deutsch. Math.-Verein., 27 (1970), 18-61.

H.H. Gonska, Modified Pičugov-Lehnhoff operators. In: Approximation Theory V (Proc.Int. Sympos. College Station 1986, ed by C.K. Chui et al), New York, Academic Press 1986, 355-358.

H.H. Konska, Xin-long Zhou, Polynomial approximation with side conditions: recent results and open problems. Submitted for publication. Temporary reference: Schriftenreihe des Instituts für Angewandte Informatik, SIAI-EBS-7-93, European Business School, 1993.

S.G. Kreĭn, Ju. I. Petunin, E.M. Semenov, Interpolation of Linear Operators. Providence. RI: Amer. Math. Soc., 1982.

D. Leviatan, Pointwise estimates for convex polynomial approximation. Proc. Amer. Math. Soc. 98 (1986), 471-474, https://doi.org/10.1090/s0002-9939-1986-0857944-9

G.G. Lorentz, K. Zeller, Degree of approixmation by monotone polynomials, J. Approx. Theory, 1 (1968), 501-504, https://doi.org/10.1016/0021-9045(68)90039-7

Y. Matsuoka, On the approximation of functions by some singular integrals, Tôhoku Math. J., 18 (1966), 13-43, https://doi.org/10.2748/tmj/1178243477

Downloads

Published

1999-02-01

How to Cite

Gonska, H. H., & Cao, J. .-D. (1999). Approximation by boolean sums of positive linear operators VI: monotone approximation and global smoothness preservation. Rev. Anal. Numér. Théor. Approx., 28(1), 37–61. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no1-art4

Issue

Section

Articles