On an approximation operator and its Lipschitz constant
DOI:
https://doi.org/10.33993/jnaat311-708Keywords:
approximation operators of Kantorovich type, Sheffer sequences, Lipschitz constantsAbstract
In this note we consider an approximation operator of Kantorovich type in which expression appears a basic sequence for a delta operator and a Sheffer sequence for the same delta operator. We give a convergence theorem for this operator and we find its Lipschitz constant.Downloads
References
Agratini, O., On a certain class of approximation operators, Pure Math. Appl., 11, pp. 119-127, 2000.
Brown, B. M., Elliot, D. and Paget, D. F., Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49, pp. 196-199, 1987, https://doi.org/10.1016/0021-9045(87)90087-6 DOI: https://doi.org/10.1016/0021-9045(87)90087-6
Craciun, M., Approximation operators constructed by means of Sheffer sequences, Rev. Anal. Numér. Théor. Approx., 30, 2001, pp. 135-150, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no2-art3
Lupaş, L. and Lupaş, A., Polynomials of binomial type and approximation operators, Studia Univ. Babeş-Bolyai, Mathematica, 32, pp. 61-69, 1987.
Manole, C., Approximation operators of binomial type, Univ. Cluj-Napoca, Research Seminar on Numerical and Statistical Calculus, Preprint no. 9, pp. 93-98, 1987.
Miheşan, V., Approximation of continuous functions by means of linear positive operators, Ph.D. Thesis, Cluj-Napoca, 1997 (in Romanian).
Moldovan, G., Discrete convolutions and linear positive operators, Ann. Univ. Sci. Budapest R. Eötvös, 15, pp. 31-44, 1972.
Popoviciu, T., Remarques sur les polynomes binomiaux, Bull. Soc. Math. Cluj, 6, pp. 146-148, 1931.
Rota, G.-C., Kahaner, D. and Odlyzko, A., On the foundations of combinatorial theory. VIII. Finite operator calculus, J. Math. Anal. Appl., 42, pp. 684-760, 1973, https://doi.org/10.1016/0022-247X(73)90172-8 DOI: https://doi.org/10.1016/0022-247X(73)90172-8
Sablonnière, P., Positive Bernstein-Sheffer operators, J. Approx. Theory, 83, pp. 330-341, 1995, https://doi.org/10.1006/jath.1995.1124 DOI: https://doi.org/10.1006/jath.1995.1124
Stancu, D. D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures Appl., 13, pp. 1173-1194, 1968.
Stancu, D. D., On the approximation of functions by means of the operators of binomial type of Tiberiu Popoviciu, Rev. Anal. Numér. Théor. Approx., 30, pp. 95-105, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art13
Stancu, D. D. and Occorsio, M. R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27, pp. 167-181, 1998, http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art17
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.