\(L^{p}\)-approximation \((p \geq 1)\) by Stancu-Kantorovich polynomials
DOI:
https://doi.org/10.33993/jnaat312-719Keywords:
Stancu-Kantorovich polynomials, the second modulus of smoothness of Ditzian-TotikAbstract
We establish direct and converse estimates for a generalized Kantorovich polynomial operator depending on a positive parameter.Downloads
References
Della Vecchia, B., On the approximation of functions by means of the operators of D. D. Stancu, Studia Univ. Babeş-Bolyai, Math., 37, pp. 3-36, 1992.
Della Vecchia, B. and Mache, D. H., On approximation properties of Stancu-Kantorovich operators, Rev. Anal. Numér. Theor. Approx., 27, pp. 71-80, 1998, http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art8
Ditzian, Z. and Totik, V., Moduli of Smoothness, Springer-Verlag, Berlin Heidelberg New York London, 1987. DOI: https://doi.org/10.1007/978-1-4612-4778-4
DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer-Verlag, Berlin Heidelberg New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Gonska, H. H. and Zhou, X. L., The strong converse inequality for Bernstein-Kantorovich operators. Concrete analysis, Comput. Math. Appl., 30, no. 3-6, pp. 103-128, 1995, https://doi.org/10.1016/0898-1221(95)00089-5 DOI: https://doi.org/10.1016/0898-1221(95)00089-5
Razi, Q., Approximation of a function by Kantorovich type operators, Mat. Vesnic., 41, pp. 183-192, 1989.
Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 8, pp. 1173-1194, 1968.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.