Solving discrete multiattribute problems under risk based on an approximation

Authors

  • Sixto Ríos-Insua Madrid Technical University, Spain
  • Alfonso Mateos Madrid Technical University, Spain
  • Antonio Jiménez Madrid Technical University, Spain

DOI:

https://doi.org/10.33993/jnaat322-750

Keywords:

decision analysis, multiattribute utility, efficient set, approximation
Abstract views: 172

Abstract

We consider the multiattribute decision making problem under risk with imprecise information on the decision maker's preferences, modelled by means of a vector utility function. We propose an interactive decision aid approach, which uses an idea of approximation to the utility efficient set and qualitative comparisons for the decision maker, to overcome the possible difficulty in generate it. An application to university selection illustrates the procedure.

Downloads

Download data is not yet available.

References

Chankong, V. and Haimes, Y. Y., Multiobjective Decision Making, Theory and Methodology, North Holland, Amsterdam, 1983.

Fishburn, P. C., Utility Theory for Decision Making, Wiley, New York, 1976.

French, S., Decision Theory: An Introduction to the Mathematics of Rationality, Horwood, Chichester, 1986.

Gal, T., A General method for determining the set of all efficient solutions of a linear vector maximum problem, European Journal of Operational Research, 1, pp. 307-322, 1972, https://doi.org/10.1016/0377-2217(77)90063-7. DOI: https://doi.org/10.1016/0377-2217(77)90063-7

Gal, T., Postoptimal Analyses, Parametric Programming, and Related Topics, Walter de Gruyter, Berlin, 1995. DOI: https://doi.org/10.1515/9783110871203

Gal, T., Stewart, T. J. and Hanne, T. (eds.), Multicriteria Decision Making: Advances in MCDM, Algorithms, Theory and Applications, Kluwer, Boston, 1999. DOI: https://doi.org/10.1007/978-1-4615-5025-9

Goicoechea, A., Hansen, D. R. and Duckstein, L., Multiobjective Decision Analysis with Engineering and Business Applications, Wiley, New York, 1982.

Keeney, R. and Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Trade-offs, Wiley, 2nd ed., New York, 1993. DOI: https://doi.org/10.1017/CBO9781139174084

Mateos, A. and Ríos-Insua, S., Utility efficiency and its approximation, TOP, 4, no. 2, pp. 285-299, 1996, https://doi.org/10.1007/BF02568513. DOI: https://doi.org/10.1007/BF02568513

Mateos, A. and Ríos-Insua, S., Approximation of value efficient solutions, Journal of Multi-Criteria Decision Analysis, 6, pp. 227-232, 1997, https://doi.org/10.1002/(SICI)1099-1360(199707)6:4<227::AID-MCDA149>3.0.CO;2-J. DOI: https://doi.org/10.1002/(SICI)1099-1360(199707)6:4<227::AID-MCDA149>3.0.CO;2-J

Mateos, A. and Ríos-Insua, S., An approximation to the value efficient set, in Multiple Criteria Decision Making, G. Fandel and T. Gal (eds.), LNEMS 448, Springer-Verlag, Berlin, pp. 360--371, 1997, https://doi.org/10.1007/978-3-642-59132-7_39. DOI: https://doi.org/10.1007/978-3-642-59132-7_39

Rietveld, P., Multiple Objective Decision Methods and Regional Planning, Studies in Regional Science and Urban Economics, 7, North-Holland, Amsterdam, 1980.

Ríos-Insua, S. and Mateos, A., Utility efficient set and its interactive reduction, European Journal of Operational Research, 105, no. 3, pp. 581-593, 1997, https://doi.org/10.1016/S0377-2217(97)00068-4. DOI: https://doi.org/10.1016/S0377-2217(97)00068-4

Roberts, F. S., What if utility do not exist?, Theory and Decision, 3, pp. 126-139, 1972, https://doi.org/10.1007/BF00141052. DOI: https://doi.org/10.1007/BF00141052

Roberts, F. S., Measurement Theory, Addison-Wesley, Reading, Massachussets, 1979.

Steuer, R., Multiple Criteria Optimization: Theory, Computation and Application, Wiley, New York, 1986.

Stewart, T. J., Robustness of additive value function methods in MCDM, Journal of Multi-Criteria Decision Analysis, 5, pp. 301-309, 1996, https://doi.org/10.1002/(SICI)1099-1360(199612)5:4<301::AID-MCDA120>3.0.CO;2-Q. DOI: https://doi.org/10.1002/(SICI)1099-1360(199612)5:4<301::AID-MCDA120>3.0.CO;2-Q

Vincke, Ph., Multicriteria Decision Aid, Wiley, New York, 1992.

Von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior, 2nd ed., Princeton University Press, 1947.

Yu, P. L., Multiple Criteria Decision Making, Plenum Press, New York, 1985. DOI: https://doi.org/10.1007/978-1-4684-8395-6

Downloads

Published

2003-08-01

How to Cite

Ríos-Insua, S., Mateos, A., & Jiménez, A. (2003). Solving discrete multiattribute problems under risk based on an approximation. Rev. Anal. Numér. Théor. Approx., 32(2), 209–222. https://doi.org/10.33993/jnaat322-750

Issue

Section

Articles