Weighted quadrature formulae of Gauss-Christoffel-Stancu type
DOI:
https://doi.org/10.33993/jnaat322-751Keywords:
weighted quadrature formulae, multiple fixed nodes and simple Gaussian nodes, Stancu method of parameters, Christoffel--Szegő formulaAbstract
In the present paper we consider weighted integrals and develop explicit quadrature formulae of Gauss-Christoffel-Stancu type using simple Gaussian nodes and multiple fixed nodes. Given the multiple fixed nodes and their multiplicities, we present some algorithms for finding the Gaussian nodes, the coefficients and the remainders of the corresponding quadrature formulae. Several illustrative examples are presented in the case of some classical weight functions.Downloads
References
Christoffel, E. B., Über die Gaussiche Quadratur und eine Veralgemeinerung derselben, J. Reine Angew. Math., 55, pp. 61-82, 1858, https://doi.org/10.1515/crll.1858.55.61. DOI: https://doi.org/10.1515/crll.1858.55.61
Christoffel, E. B., Sur une classe particulière de fonctions entières et de fractions continues, Ann. Mat. Pura Appl., 2, 8, pp. 1-10, 1877, https://doi.org/10.1007/BF02420775. DOI: https://doi.org/10.1007/BF02420775
Deruyts. J., Sur le calcul approché de certaines intégrales définies, Bull. Acad. Roy. Belgique, (3) 11, pp. 307-311, 1986.
Gautschi, W., Construction of Gauss-Christoffel quadrature formulas, Math. Comp., 22, pp. 251-270, 1968, https://doi.org/10.2307/2004654. DOI: https://doi.org/10.1090/S0025-5718-1968-0228171-0
Gautschi, W., A survey of Gauss-Christoffel quadrature formulae, in E. B. Christoffel: The influence of his work on mathematics and the physical sciences, edit. by P. Butzer, F. Fehér, Birkhäuser, Basel, pp. 72-147, 1981. DOI: https://doi.org/10.1007/978-3-0348-5452-8_6
Gautschi, W., Recognition of Christoffel work on quadrature during and after his lifetime, ibid., pp. 724-727, 1981. DOI: https://doi.org/10.1007/978-3-0348-5452-8_58
Jacobi, C. G. J., Über Gauss neue Methode, die Werthe der Integrale näherungsweise zu finden, J. Reine Angew. Math., 1, pp. 301-308, 1826, https://doi.org/10.1515/crll.1826.1.301. DOI: https://doi.org/10.1515/crll.1826.1.301
Krylov, V. I., Approximate Calculation of Integrals, McMillan, New York, 1962.
Markov, A., Sur la méthode de Gauss pour le calcul approché des intégrales, Math. Ann., 25, pp. 427-432, 1885, https://doi.org/10.1007/BF01443287. DOI: https://doi.org/10.1007/BF01443287
Mehler, F. G., Bemerkungen zur Theorie der mecanischen Quadraturen, J. Reine Angew. Math., 63, pp. 152-157, 1864, https://doi.org/10.1515/crll.1864.63.152. DOI: https://doi.org/10.1515/crll.1864.63.152
Possé, C., Sur les quadratures, Nouri Ann. Math., (2) 14, pp. 147-156, 1875.
Stancu, D. D., Generalizarea formulei de cuadratură a lui Gauss-Christoffel, Acad. R. P. Rom., Fil. Iaşi, Stud. Cerc. Sti., 8, pp. 1-18, 1957 (in Romanian).
Stancu, D. D., On a class of orthogonal polynomials and on some general quadrature formulae with minimum number of terms, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N. 5.), 1, no. 49, pp. 479-498, 1957.
Stancu, D. D., O metodă pentru construirea de formule de cuadratură de grad înalt de exactitate, Comunic. Acad. R. P. Rom., 8, pp. 349-358, 1958 (in Romanian).
Stancu, D. D., Sur quelques formules générales de quadrature du type Gauss-Christoffel, Mathematica (Cluj), 1(24), pp. 167-182, 1959.
Stancu, D. D. and Stroud, A. H., Quadrature formulas with simple Gaussian nodes and multiple fixed nodes, Math. Comp., 17, pp. 384-394, 1963. DOI: https://doi.org/10.1090/S0025-5718-1963-0157485-3
Stieltjes, T. J., Quelques recherches sur la théorie des quadratures dites mécaniques, Ann. Sci. Ec. Norm. Paris, Sér. 3, 1, pp. 409-426, 1884. DOI: https://doi.org/10.24033/asens.245
Ssegö, G., Über die Entwickelungen einer analytischen Funktion nach dem Polynomen eines Orthogonalsystems, Math. Ann., 82, pp. 188-212, 1921. DOI: https://doi.org/10.1007/BF01498664
Turan, P., On the theory of the mechanical quadrature, Acta Sci. Math. Szeged, 12, pp. 30-37, 1950.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.