The Voronovskaja theorem for Bernstein-Schurer bivariate operators
DOI:
https://doi.org/10.33993/jnaat331-755Keywords:
Bernstein operator, Bernstein-Schurer operator, bivariate operator, Voronovskaja theoremAbstract
The Voronovskaja theorem for the Bernstein-Schurer bivariate operatos is established.Downloads
References
Bărbosu D., Some properties of the fundamental polynomials of Bernstein--Schurerr, "Proc. of ICAM 3", Baia Mare-Borşa, Oct. 10-13, 2002, to appear.
Bărbosu D., The Voronovskaja theorem for the Bernstein--Schurer operators, "Proc. of ICAM 3", Baia Mare-Borşa, Oct. 10-13, 2002, to appear.
Bărbosu D., Bernstein-Schurer bivariate operators, Rev. Anal. Numér. Théor. Approx., to appear, http://ictp.acad.ro/jnaat/journal/article/view/2004-vol33-no2-art4 DOI: https://doi.org/10.18514/MMN.2004.71
Delvos J, Schempp W., Boolean Methods in Interpolation and Approximation, Longman Scientific & Technical, 1989.
Schurer F., Linear positive operators in approximation theory, Math. Inst.Techn. Univ. Delft. Report, 1962.
Voronovskaja E., Determination de la forme asymptotique d'approximation des functions par les polynômes de M. Bernstein, C.R. Acad. Sci. URSS, pp. 79-85, 1932.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.