A semilocal convergence analysis for the method of tangent parabolas
DOI:
https://doi.org/10.33993/jnaat341-786Keywords:
Banach space, tangent parabola, Euler-Chebyshev method, majorizing sequence, Fréchet-derivative, Lipschitz-center conditionsAbstract
We present a semilocal convergence analysis for the method of tangent parabolas (Euler-Chebyshev) using a combination of Lipschitz and center Lipschitz conditions on the Fréchet derivatives involved. This way we produce a majorizing sequence which converges under weaker conditions than before. The error bounds obtained are more precise and the information of the location of the solution better than in earlier results.Downloads
References
Argyros, I.K., On the convergence of a Chebysheff-Halley-type method under Newton-Kantorovich hypotheses, Appl. Math. Letters, 6, no. 5, pp. 71-74, 1993, https://doi.org/10.1016/0893-9659(93)90104-u DOI: https://doi.org/10.1016/0893-9659(93)90104-U
Argyros, I.K., A note on the Halley method in Banach spaces, Appl. Math. and Comp., 58, pp. 215-224, 1993, https://doi.org/10.1016/0096-3003(93)90137-4 DOI: https://doi.org/10.1016/0096-3003(93)90137-4
Argyros, I.K., Advances in the Efficiency of Computational Methods and Applications, World Scientific Publ. Co., River Edge, NJ, 2000, https://doi.org/10.1142/4448 DOI: https://doi.org/10.1142/4448
Ezquerro, J.A. and Hernandez, M.A., A modification of the super-Halley method under mild differentiability conditions, J. Comput. Appl. Math., 114, pp. 405-409, 2000, https://doi.org/10.1016/s0377-0427(99)00348-9 DOI: https://doi.org/10.1016/S0377-0427(99)00348-9
Gutiérrez, J.M. and Hernandez, M.A., A family of Chebyshev-Halley type methods in Banach spaces, Bull. Austral. Math. Soc., 55, pp. 113-130, 1997, https://doi.org/10.1017/s0004972700030586 DOI: https://doi.org/10.1017/S0004972700030586
Kanno, S., Convergence theorems for the method of tangent hyperbolas, Math. Japonica, 37 no. 4, pp. 711-722, 1992.
Kantorovich, L.V. and Akilov, G.P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982. DOI: https://doi.org/10.1016/B978-0-08-023036-8.50010-2
Mertvecova, M.A., An analog of the process of tangent hyperbolas for general functional equations, Dokl. Akad. Nauk SSSR, 88, pp. 611-614, 1953.
Necepurenko, M.T., On Chebysheff's method for functional equations, Usephi, Mat. Nauk., 9, pp. 163-170, 1954.
Safiev, R.A., The method of tangent hyperbolas, Sov. Math. Dokl., 4, pp. 482-485, 1963.
Schwetlick, H., Numerische Losung Nichtlinearer Gleichungen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.
Yamamoto, T., On the method of tangent hyperbolas in Banach spaces, J. Comput. Appl. Math., 21, pp. 75-86, 1988, https://doi.org/10.1016/0377-0427(88)90389-5 DOI: https://doi.org/10.1016/0377-0427(88)90389-5
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.