Approximation properties of a bivariate Stancu type operator
DOI:
https://doi.org/10.33993/jnaat341-787Keywords:
Stancu's operators, Korovkin theorem, bivariate function, modulus of smoothness, Voronovskaia theoremAbstract
An extension of Stancu's operator \(P_{m}^{(\alpha ,\beta )}\) to the case of bivariate functions is presented and some approximation properties of this operator are discussed.Downloads
References
Altomore, F., Campiti, M., Korovkin-type Approximation Theory and its Application, de Gruyter Series Studies in Mathematics, 17, Walter de Gruyter &Co, Berlin, New-York, 1994.
Badea, C., Badea, I., Gonska, H.H., A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math. Soc., 34, pp. 53-64, 1986, https://doi.org/10.1017/s0004972700004494 DOI: https://doi.org/10.1017/S0004972700004494
Badea, C., Cottin., Korovkin-type theorems for Generalided Boolean Sum Operators, Colloguia Mathematica Societatis Janos Bolyai, 58, Approximation Theory, Kecskemet (Hungary), 51-68, 1990.
Barbosu, D., A Voronovskaia-type theorem for the bivariate operator of Stancu (submitted).
Bőgel, K., Mehrdimensionale Differentiation von Funktionen mehrer Veränderlicher, J. Reine Angew. Math., 170, pp. 197-217, 1934. DOI: https://doi.org/10.1515/crll.1934.170.197
Bőgel, K., Ubër die mehrdimensionale Differentiation Integration und beschrankte Variation, J. Reine Angew. Math., 173, pp. 5-29, 1935. DOI: https://doi.org/10.1515/crll.1935.173.5
Dobrescu, E., Matei, I., Aproximarea prin polinoame de tip Bernstein a funcţiilor bidimensional continue, Anal. Univ. Timişoara, Seria Ştiinţe matematice fizice, IV, pp. 85-90, 1966.
Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures et Appl., 13, no. 8, pp. 1173-1194, 1968.
Stancu, D. D., Coman, Gh., Agratini, O., Trâmbiţaş, R., Analiză numerică şi teoria aproximării, vol. I, Presa Universitară Clujeană, 2001 (in Romanian).
Stancu, F., Aproximarea funcţiilor de două şi mai multe variabile cu ajutorul operatorilor liniari pozitivi, Ph. D. Thesis, Cluj-Napoca, 1984 (in Romanian).
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.