Iterative functional-differential system with retarded argument
DOI:
https://doi.org/10.33993/jnaat352-841Keywords:
iterative functional-differential equation, weakly Picard operator, delay, data dependenceAbstract
Existence, uniqueness and data dependence results of solution to the Cauchy problem for iterative functional-differential system with delays are obtained using weakly Picard operator theory.Downloads
References
Coman, Gh., Pavel, G., Rus, I., Rus, I. A., Introducere în teoria ecuaţiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
Hale, J., Theory of functional Differential Equations, Springer-Verlag, Berlin, 1977. DOI: https://doi.org/10.1007/978-1-4612-9892-2
Mureşan, V., Functional-Integral Equations, Editura Mediamira, Cluj-Napoca, 2003.
Kuang, Y., Delay differential equations with applications to population dynamics, Academic Press, Boston, 1993, https://doi.org/10.1016/s0076-5392(08)x6164-8 DOI: https://doi.org/10.1016/S0076-5392(08)X6164-8
Otrocol, D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48 (71), no. 1, pp. 61-68, 2006.
Otrocol, D., Smooth dependence on parameters for some Lotka-Volterra system with delays (to appear).
Rus, I. A., Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
Rus, I. A., Weakly Picard mappings, Comment. Math. Univ. Caroline, 34, pp. 769-773, 1993.
Rus, I. A., Functional-differential equation of mixed type, via weakly Picard operators, Seminar of Fixed Point Theory, Cluj-Napoca, 3, pp. 335-346, 2002.
Rus, I. A. and Egri, E., Boundary value problems for iterative functional-differential equations, Studia Univ. "Babeş-Bolyai", Matematica, 51 (2) pp. 109-126, 2006.
Si, J. G., Li, W. R. and Cheng, S. S., Analytic solution of on iterative functional-differential equation, Comput. Math. Appl., 33 (6), pp. 47-51, 1997, https://doi.org/10.1016/s0898-1221(97)00030-8 DOI: https://doi.org/10.1016/S0898-1221(97)00030-8
Stanek, S., Global properties of decreasing solutions of equation x′(t)=x(x(t))+x(t), Funct. Diff. Eq., 4 (1-2), pp. 191-213, 1997.
Şerban, M. A., Fiber ϕ-contractions, Studia Univ. "Babeş-Bolyai", Mathematica, 44 (3), pp. 99-108, 1999.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.