Fixed points and integral inclusions

Authors

  • Adrian Petruşel “Babes-Bolyai” University Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat352-844

Keywords:

fixed point, \(\varphi\)-contraction, multivalued operator, integral inclusion
Abstract views: 222

Abstract

The aim of this paper is to present, as applications of some fixed point theorems, existence results for integral equations and inclusions.

Downloads

Download data is not yet available.

References

Aubin, J.-P. and Frankowska, H., Set-valued analysis, Birkhauser, Basel, 1990.

Biles, D.C., Robinson, M.P. and Spraker, J.S., Fixed point approaches to the solution of integral inclusions, Topol. Meth. Nonlinear Anal., 25, pp. 297-311, 2005, https://doi.org/10.12775/tmna.2005.015 DOI: https://doi.org/10.12775/TMNA.2005.015

Dugundji J. and Granas, A., Fixed point theory, Springer-Verlag, Berlin, 2003,https://doi.org/10.1007/978-0-387-21593-8 DOI: https://doi.org/10.1007/978-0-387-21593-8

Hu, S. and Papageorgiou, N.S., Handbook of multivalued analysis, Vol. I and II, Kluwer Acad. Publ., Dordrecht, 1997 and 1999. DOI: https://doi.org/10.1007/978-1-4615-6359-4

Petruşel, A., Operatorial inclusions, House of the Book of Science, 2002.

Rus, I.A., Generalized contractions, Cluj University Press, Cluj-Napoca, 2001.

Rus, I.A., Picard operators and applications, Scientiae Mathematicae Japonicae, 58, pp. 191-219, 2003.

Rus, I.A., Petruşel, A. and Sîntămărian, A., Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal., 52, pp. 1947-1959, 2003, https://doi.org/10.1016/s0362-546x(02)00288-2 DOI: https://doi.org/10.1016/S0362-546X(02)00288-2

Rybinski, L., On Carathédory type selections, Fund. Math., 125, pp. 187-193, 1985, https://doi.org/10.4064/fm-125-3-187-193 DOI: https://doi.org/10.4064/fm-125-3-187-193

Wegrzyk, R., Fixed point theorems for multifunctions and their applications to functional equations, Disscus. Math., 201, 1982.

Downloads

Published

2006-08-01

How to Cite

Petruşel, A. (2006). Fixed points and integral inclusions. Rev. Anal. Numér. Théor. Approx., 35(2), 183–188. https://doi.org/10.33993/jnaat352-844

Issue

Section

Articles