Continuous selections of Borel measures, positive operators and degenerate evolution problems

Authors

  • Francesco Altomare Universia degli Studi di Bari, Italy
  • Vita Leonessa Universia degli Studi della Basilicata, Italy

DOI:

https://doi.org/10.33993/jnaat361-852

Keywords:

degenerate differential operator, diffusion equation, Markov semigroup, Borel measure, positive approximation process, asymptotic formula
Abstract views: 244

Abstract

In this paper we continue the study of a sequence of positive linear operators which we have introduced in [9] and which are associated with a continuous selection of Borel measures on the unit interval. We show that the iterates of these operators converge to a Markov semigroup whose generator is a degenerate second-order elliptic differential operator on the unit interval. Some qualitative properties of the semigroup, or equivalently, of the solutions of the corresponding degenerate evolution problems, are also investigated.

Downloads

Download data is not yet available.

References

Altomare, F., Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Pisa, Cl. Sci., 16 (4), no. 2, pp. 259-279, 1989.

Altomare, F., Lototsky-Schnabl operators on the unit interval, C. R. Acad. Sci. Paris, 313, Série I, pp. 371-375, 1991.

Altomare, F., Lototsky-Schnabl operators on compact convex sets and their associated limit semigroups, Mh. Math., 114, pp. 1-13, 1992, https://doi.org/10.1007/bf01572077 DOI: https://doi.org/10.1007/BF01572077

Altomare, F., Lototsky-Schnabl operators on the unit interval and degenerate diffusion equations, In: Progress Functional Analysis (Eds: K. D. Bierstedt, J. Bonet, L. Horváth and M. Maestre), North Holland Math. Studies, 170, pp. 259-277, 1992, https://doi.org/10.1016/s0304-0208(08)70325-6 DOI: https://doi.org/10.1016/S0304-0208(08)70325-6

Altomare, F. and Amiar, R., Asymptotic formulae for positive linear operators, Math. Balkanica, New Series, 16, pp. 283-304, 2002.

Altomare, F. and Attalienti, A., Forward diffusion equations and positive operators, Math. Z., 225, pp. 211-229, 1997, https://doi.org/10.1007/pl00004306 DOI: https://doi.org/10.1007/PL00004306

Altomare, F. and Campiti, M., Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics 17, Walter de Gruyter, Berlin-New York, 1994, https://doi.org/10.1515/9783110884586 DOI: https://doi.org/10.1515/9783110884586

Altomare, F. and Carbone, I., On some degenerate differential operators on weighted function spaces, J. Math Anal. Appl., 213, pp. 308-333, 1997, https://doi.org/10.1006/jmaa.1997.5540 DOI: https://doi.org/10.1006/jmaa.1997.5540

Altomare, F. and Leonessa, V., On a sequence of positive linear operators associated with a continuous selection of Borel measures, Mediterr. J. Math., 3., nos. 3-4, pp. 363-382, 2006, https://doi.org/10.1007/s00009-006-0084-8 DOI: https://doi.org/10.1007/s00009-006-0084-8

Altomare, F., Leonessa, V. and Raşa, I., On Bernstein-Schnabl operators on the unit interval, to appear in Z. Anal. Anwendungen, 27, no. 3, 2008. DOI: https://doi.org/10.4171/ZAA/1360

Altomare, F. and Mangino, E. M., On a class of elliptic-parabolic equations on unbounded interval, Positivity, 5, pp. 239-257, 2000. DOI: https://doi.org/10.1023/A:1011450903149

Attalienti, A., Generalized Bernstein-Durrmeyer Operators and the associated limit semigroup, J. Approx. Theory, 99, pp. 289-309, 1999, https://doi.org/10.1006/jath.1999.3329 DOI: https://doi.org/10.1006/jath.1999.3329

Attalienti, A. and Campiti, M., Degenerate evolution problems and Beta-type operators, Studia Math., 140 (2), pp. 117-139, 2000.

Bardaro, C., Butzer, P. L., Stens, R. L. and Vinti, G., Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis, 23, pp. 299-340, 2003, https://doi.org/10.1524/anly.2003.23.4.299 DOI: https://doi.org/10.1524/anly.2003.23.4.299

Bauer, H., Probability Theory, De Gruyter Studies in Mathematics 23, Walter de Gruyter, Berlin-New York, 1996.

Belleni-Morante, A., Applied Semigroups and Evolution Equations, The Clarendan Press, Oxford University Press, New York, 1979.

Bernstein, S. N., Demonstration du theoreme de Weierstrass fondee sur le calcul de probabilités, Comm. Soc. Math. Kharkow, 13 (2), pp. 1-2, 1912-1913.

Campiti, M. and Metafune, G., Evolution equations associated with recursively de-fined Bernstein-type operators, J. Approx. Theory, 87, no. 3, pp. 270-290, 1996, https://doi.org/10.1006/jath.1996.0105 DOI: https://doi.org/10.1006/jath.1996.0105

Campiti, M., Metafune, G. and Pallara, D., Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57, pp. 1-36, 1998, https://doi.org/10.1007/pl00005959 DOI: https://doi.org/10.1007/PL00005959

Engel, K.-J. and Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, New York-Berlin, 1999.

Kantorovich, L. V., Sur certains d´eveloppements suivant les polynˆomes de la forme de S. Bernstein, I, II, C. R. Acad. URSS, pp. 563-568, pp. 595-600, 1930.

Mamedov, R. G., On the order of the approximation of differentiable functions by linear positive operators (In Russian), Doklady SSSR, 146, pp. 1013-1016, 1962.

Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1

Voronovskaja, E. V., The asymptotic properties of the approximation of functions with Bernstein polynomials, Dokl. Akad. Nauk SSSR, A, pp. 79-85, 1932.

Downloads

Published

2007-02-01

How to Cite

Altomare, F., & Leonessa, V. (2007). Continuous selections of Borel measures, positive operators and degenerate evolution problems. Rev. Anal. Numér. Théor. Approx., 36(1), 9–23. https://doi.org/10.33993/jnaat361-852

Issue

Section

Articles