A dual generalization of convex functions

Authors

  • M. Apetrii “Al. I. Cuza” University, Romania

DOI:

https://doi.org/10.33993/jnaat361-853

Keywords:

\(M\)-convexity, convex function, quasiconvex function, extrem point, local bounded function
Abstract views: 230

Abstract

As it is well known, the convexity property of a function may be described by the quasiconvexity property of all "the dual perturbations" of this function. If we consider the "dual perturbation" only in a subset \(M\subset X^{\ast}\) we obtain a general class of functions called \(M\)-convex. In this paper we establish some special properties and a continuity theorem of this new type of functions.

Downloads

Download data is not yet available.

References

Apetrii, M., A new type of convexity defined by dual perturbations, An. Univ. De Vest Timişoara, seria Matematică Informatică, 45, pp. 11-20, 2007.

Aussel, D., Subdifferential properties of quasiconvex and pseudoconvex functions: unified approach, J. Optim. Theory Appl, 97, pp. 29-45, 1998, https://doi.org/10.1023/a:1022618915698 DOI: https://doi.org/10.1023/A:1022618915698

Aussel, D., Corvellec, J. N. and Lassonde, M., Subdifferential characterization of quasiconvexity and convexity, J. Convex Anal., 1, pp. 195-201, 1994.

Avriel, M., Diewert, W. E., Schaible, S. and Zang, I., Generalized Concavity, Plenum Press, New York and London, 1988,https://doi.org/10.1007/978-1-4684-7600-2 DOI: https://doi.org/10.1007/978-1-4684-7600-2

Barbu, V. and Precupanu, T., Convexity and Optimization in Banach Spaces, D. Reidel Publish. Co., Dordrecht, 1986.

Bourbaki, N., Espaces Vectoriels Topologiques, Act. Sci. et. Ind., Hermann, Paris, 1966.

Crouzeix, J. P., Contribution à l'étude des functions quasi-convexes, Thèse de Docteur en Sciences, Univ. Clermont-Ferrand II, 1977.

Crouzeix, J. P. and Ferland, J. A., Criteria for quasiconvexity and pseudoconvexity of quadratic functions: relationships and comparisons, Math. Programming, 23, pp. 193-205, 1982,https://doi.org/10.1007/bf01583788 DOI: https://doi.org/10.1007/BF01583788

Mangasarian, O. L., Pseudo-convex functions, J. Soc. Indust. Appl. Math. Control, 3, pp. 281-290, 1965, https://doi.org/10.1137/0303020 DOI: https://doi.org/10.1137/0303020

Martos, B., Nonlinear Programming Theory and Methods, Akadémiai Kiadó, Budapest, 1975.

Penot, J. P. and Quang, H. P., Generalized convexity of functions and generalized monotonicity of set-valued maps, J. Optim. Theory Appl., 92, pp. 343-356, 1997, https://doi.org/10.1023/a:1022659230603 DOI: https://doi.org/10.1023/A:1022659230603

Phu, H. X. and An P. T., Stable generalization of convex function, Optimization, 38, pp. 309-318, 1996, https://doi.org/10.1080/02331939608844259 DOI: https://doi.org/10.1080/02331939608844259

Downloads

Published

2007-02-01

Issue

Section

Articles

How to Cite

Apetrii, M. (2007). A dual generalization of convex functions. Rev. Anal. Numér. Théor. Approx., 36(1), 25-38. https://doi.org/10.33993/jnaat361-853