A dual generalization of convex functions
DOI:
https://doi.org/10.33993/jnaat361-853Keywords:
\(M\)-convexity, convex function, quasiconvex function, extrem point, local bounded functionAbstract
As it is well known, the convexity property of a function may be described by the quasiconvexity property of all "the dual perturbations" of this function. If we consider the "dual perturbation" only in a subset \(M\subset X^{\ast}\) we obtain a general class of functions called \(M\)-convex. In this paper we establish some special properties and a continuity theorem of this new type of functions.Downloads
References
Apetrii, M., A new type of convexity defined by dual perturbations, An. Univ. De Vest Timişoara, seria Matematică Informatică, 45, pp. 11-20, 2007.
Aussel, D., Subdifferential properties of quasiconvex and pseudoconvex functions: unified approach, J. Optim. Theory Appl, 97, pp. 29-45, 1998, https://doi.org/10.1023/a:1022618915698 DOI: https://doi.org/10.1023/A:1022618915698
Aussel, D., Corvellec, J. N. and Lassonde, M., Subdifferential characterization of quasiconvexity and convexity, J. Convex Anal., 1, pp. 195-201, 1994.
Avriel, M., Diewert, W. E., Schaible, S. and Zang, I., Generalized Concavity, Plenum Press, New York and London, 1988,https://doi.org/10.1007/978-1-4684-7600-2 DOI: https://doi.org/10.1007/978-1-4684-7600-2
Barbu, V. and Precupanu, T., Convexity and Optimization in Banach Spaces, D. Reidel Publish. Co., Dordrecht, 1986.
Bourbaki, N., Espaces Vectoriels Topologiques, Act. Sci. et. Ind., Hermann, Paris, 1966.
Crouzeix, J. P., Contribution à l'étude des functions quasi-convexes, Thèse de Docteur en Sciences, Univ. Clermont-Ferrand II, 1977.
Crouzeix, J. P. and Ferland, J. A., Criteria for quasiconvexity and pseudoconvexity of quadratic functions: relationships and comparisons, Math. Programming, 23, pp. 193-205, 1982,https://doi.org/10.1007/bf01583788 DOI: https://doi.org/10.1007/BF01583788
Mangasarian, O. L., Pseudo-convex functions, J. Soc. Indust. Appl. Math. Control, 3, pp. 281-290, 1965, https://doi.org/10.1137/0303020 DOI: https://doi.org/10.1137/0303020
Martos, B., Nonlinear Programming Theory and Methods, Akadémiai Kiadó, Budapest, 1975.
Penot, J. P. and Quang, H. P., Generalized convexity of functions and generalized monotonicity of set-valued maps, J. Optim. Theory Appl., 92, pp. 343-356, 1997, https://doi.org/10.1023/a:1022659230603 DOI: https://doi.org/10.1023/A:1022659230603
Phu, H. X. and An P. T., Stable generalization of convex function, Optimization, 38, pp. 309-318, 1996, https://doi.org/10.1080/02331939608844259 DOI: https://doi.org/10.1080/02331939608844259
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.