Weaker conditions for the convergence of Newton-like methods

Authors

  • Ioannis K. Argyros Cameron University, Lawton, USA

DOI:

https://doi.org/10.33993/jnaat361-854

Keywords:

Banach Space, Newton-like method, majorizing sequence, Fréchet-derivative, semilocal convergence analysis
Abstract views: 217

Abstract

We provide a semilocal convergence analysis for a certain class of Newton-like methods for the solution of a nonlinear equation containing a non differentiable term. Our approach provides: weaker sufficient conditions; finer error bounds on the distances involved; a more precise information on the location of the solution than before, and under the same computational cost.

Downloads

Download data is not yet available.

References

Argyros, I. K., On a new Newton-Mysovskii-type theorem with applications to inexact Newton-like methods and their discretizations, IMA J. Numer. Anal., 18, pp. 37-56, 1997, https://doi.org/10.1093/imanum/18.1.37 DOI: https://doi.org/10.1093/imanum/18.1.37

Argyros, I. K., Advances in the efficiency of computational methods and applications, World Scientific Publ. Co, NJ River Edye, 2000, https://doi.org/10.1142/4448 DOI: https://doi.org/10.1142/4448

Argyros, I. K., An improved convergence analysis and applications for Newton-like methods in Banach space, Numer. Funct. Anal. and Optimiz., 24, nos. 7-8, pp. 653-672, 2003, https://doi.org/10.1081/nfa-120026364 DOI: https://doi.org/10.1081/NFA-120026364

Argyros, I. K. and Szidarovszky, F., The theory and application of iteration methods, C.R.C. Press, Boca Raton, Florida, 1993.

Chen, X. and Yamamoto, T., Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. and Optimiz., 10, nos. 1-2, pp. 37-48, 1989, https://doi.org/10.1080/01630568908816289 DOI: https://doi.org/10.1080/01630568908816289

Dennis, J. E., Toward a unified convergence theory for Newton-like methods, in: Rall, L.B., ed., Nonlinear Functional Analysis and Applications, Academic Press, New York, pp. 425-472, 1971, https://doi.org/10.1016/b978-0-12-576350-9.50010-2 DOI: https://doi.org/10.1016/B978-0-12-576350-9.50010-2

Deuflhard, P. and Heindl, G., Affine invariant convergence theorems for Newton's method and extensions to related method, SIAM J. Numer. Anal., 16, pp. 1-10, 1979, https://doi.org/10.1137/0716001 DOI: https://doi.org/10.1137/0716001

Ezquerro, J. A. and Hernandez, M. A., Multipoint super-Halley type approximation algorithms in Banach spaces, Numer. Anal. Optim., 21, nos. 7-8, pp. 845-858, 2000, https://doi.org/10.1080/01630560008816989 DOI: https://doi.org/10.1080/01630560008816989

Gutierrez, J. M., A new semilocal convergence theorem for newton's method, J. Comput. Appl. Math., 79, pp. 131-145, 1997, https://doi.org/10.1016/s0377-0427(97)81611-1 DOI: https://doi.org/10.1016/S0377-0427(97)81611-1

Gutierrez, J. M. and Hernandez, M. A., Newton's method under weak Kantorovich conditions, IMA Journal of Numer. Anal., 20, pp. 521-532, 2000, https://doi.org/10.1093/imanum/20.4.521 DOI: https://doi.org/10.1093/imanum/20.4.521

Hernandez, M. A., Relaxing convergence conditions for Newton's method, J. Math. Anal. Appl., 249, pp. 463-475, 2000, https://doi.org/10.1006/jmaa.2000.6900 DOI: https://doi.org/10.1006/jmaa.2000.6900

Huang, Z., A note on the Kantorovich theorem for Newton iteration, J. Comput. Appl. Math., 47, pp. 211-217, 1993, https://doi.org/10.1016/0377-0427(93)90004-u DOI: https://doi.org/10.1016/0377-0427(93)90004-U

Huang, Z., Newton method under weak Lipschitz continuous derivative in Banach spaces, Appl. Math. Comput., 140, pp. 115-126, 2003, https://doi.org/10.1016/s0096-3003(02)00215-1 DOI: https://doi.org/10.1016/S0096-3003(02)00215-1

Kantorovich, L. V. and Akilov, G. P., Functional Analysis, Pergamon Press, Oxford, 1982.

Potra, F. A., On the convergence of a class of Newton-like methods, in Ansarge, R., Toening, W. eds., Iterative solution of nonlinear systems of equations. Lecture Notes in Math. Berlin, Heidelberg, Springer, New York, 953, pp. 125-137, 1983, https://doi.org/10.1007/bfb0069378 DOI: https://doi.org/10.1007/BFb0069378

Rheinboldt, W. C., A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal., 5, pp. 42-63, 1968, https://doi.org/10.1137/0705003 DOI: https://doi.org/10.1137/0705003

Yamamoto, T., A convergence theorem for Newton-like methods in Banach space, Numer. Math., 51, pp. 545-557, 1987, https://doi.org/10.1007/bf01400355 DOI: https://doi.org/10.1007/BF01400355

Zabrejko, P. P. and Ngven, D. F., The majorant method in the theory of Newton approximations and the Ptak error estimates, Numer. Funct. Anal. and Optimiz., 9, pp. 671-684, 1987, https://doi.org/10.1080/01630568708816254 DOI: https://doi.org/10.1080/01630568708816254

Downloads

Published

2007-02-01

How to Cite

Argyros, I. K. (2007). Weaker conditions for the convergence of Newton-like methods. Rev. Anal. Numér. Théor. Approx., 36(1), 39–49. https://doi.org/10.33993/jnaat361-854

Issue

Section

Articles