Remarks on interpolation in certain linear spaces (IV)
DOI:
https://doi.org/10.33993/jnaat362-863Keywords:
abstract interpolation polynomial, nonlinear mappings between linear normed spacesAbstract
In the papers [5], [6], [7] we shall study a way of extending the model of interpolating the real functions, with simple nodes, to the case of the functions defined between linear spaces, especially between linear normed spaces. In order to keep as many characteristics as possible from the case of the interpolation of real functions, in this paper we present a model of construction of the abstract interpolation polynomials and the divided differences based on the properties of multilinear mappings. The aim of the present paper is the study of the conduct of the abstract interpolation polynomial, in the case when the function for interpolation is a abstract polynomial. In the last part we will construct the abstract interpolation polynomial and the divided differences, in the case in which the spaces \(X\) and \(Y\) have finite dimensions.Downloads
References
Argyros, I. K., Polynomial Operator Equation in Abstract Spaces and Applications, CRC Press Boca Raton Boston London New York Washington D.C., 1998.
Diaconu, A., Interpolation dans les espaces abstraits. Méthodes itératives pour la resolution des équation opérationnelles obtenues par l'interpolation inverse (I), "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminars, Seminar of Functional Analysis and Numerical Methods, 4, pp. 1-52, 1981.
Diaconu, A., Interpolation dans les espaces abstraits. Méthodes itératives pour la resolution des équation opérationnelles obtenues par l'interpolation inverse (II), "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminars, Seminar of Functional Analysis and Numerical Methods, 1, pp. 41-97, 1984.
Diaconu, A., Interpolation dans les espaces abstraits. Méthodes itératives pour la resolution des équation opérationnelles obtenues par l'interpolation inverse (III), "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminars, Seminar of Functional Analysis and Numerical Methods, 1, pp. 21-71, 1985.
Diaconu, A., Remarks on Interpolation in Certain Linear Spaces (I), Studii în metode de analiză numerică şi optimizare, Chişinău: USM-UCCM., 2, 2(1), pp. 3-14, 2000.
Diaconu, A., Remarks on Interpolation in Certain Linear Spaces (II), Studii în metode de analiză numerică şi optimizare, Chişinău: USM-UCCM., 2, 2(4), pp. 143-161, 2000.
Diaconu, A., Remarks on Interpolation in Certain Linear Spaces (III). (under printing).
Makarov, V. L., and Hlobistov, V. V., Osnovî teorii polinomialnogo operatornogo interpolirovania, Institut Mathematiki H.A.H. Ukrain, Kiev, 1998 (in Russian).
Păvăloiu, I., Interpolation dans des espaces linéaire normés et application, Mathematica, Cluj, 12, (35), 1, pp. 149-158, 1970.
Păvăloiu, I., Consideraţii asupra metodelor iterative obţinute prin interpolare inversă, Studii şi cercetări matematice, 23, 10, pp. 1545-1549, 1971 (in Romanian).
Păvăloiu, I., Introducere în teoria aproximării soluţiilor ecuaţiilor, Editura Dacia, Cluj-Napoca, 1976 (in Romanian).
Prenter, P., M., Lagrange and Hermite Interpolation in Banach Spaces, Journal of Approximation Theory 4, pp. 419-432, 1971, https://doi.org/10.1016/0021-9045(71)90007-4. DOI: https://doi.org/10.1016/0021-9045(71)90007-4
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.