Approximation by complex Bernstein-Kantorovich and Stancu-Kantorovich polynomials and their iterates in compact disks
DOI:
https://doi.org/10.33993/jnaat372-888Keywords:
complex Bernstein-Kantorovich polynomials, complex Stancu-Kantorovich polynomials, Voronovskaja's theorem, exact orders in simultaneous approximationAbstract
In this paper, Voronovskaja-type results with quantitative upper estimates and the exact orders in simultaneous approximation by some complex Kantorovich-type polynomials and their iterates in compact disks in \(\mathbb{C}\) are obtained.Downloads
References
Bărbosu, D., Kantorovich-Stancu type operators, J. Ineq. Pure Appl. Math., 5, No. 3, Article 53 (electronic), 2004. DOI: https://doi.org/10.18514/MMN.2004.71
Gal, S.G., Shape Preserving Approximation by Real and Complex Polynomials, Birkhauser Publ., Boston, Basel, Berlin, 2008. DOI: https://doi.org/10.1007/978-0-8176-4703-2
Gal, S.G., Voronovskaja's theorem and iterations for complex Bernstein polynomials in compact disks, Mediterr. J. Math., 5, no. 3, pp. 253-272, 2008, https://doi.org/10.1007/s00009-008-0148-z DOI: https://doi.org/10.1007/s00009-008-0148-z
Gal, S.G., Approximation by complex Bernstein-Stancu polynomials in compact disks, Results in Math., accepted for publication, https://doi.org/10.1007/s00025-008-0335-z DOI: https://doi.org/10.1007/s00025-008-0335-z
Gal, S.G., Approximation and geometric properties of some complex Bernstein-Stancu polynomials in compact disks, Rev. Anal. Numér. Théor. Approx. (Cluj), 36, No. 1, pp. 67-77, 2007.
Gal, S.G., Exact orders in simultaneous approximation by complex Bernstein polynomials, J. Concr. Applic. Math., 2009, accepted for publication.
Gal, S.G., Exact orders in simultaneous approximation by complex Bernstein-Stancu polynomials, Rev. Anal. Num er. Théor. Approx. (Cluj), 37, No. 1, 2008, in press, http://ictp.acad.ro/jnaat/journal/article/view/2008-vol37-no1-art5
Kantorovich, L.V., Sur certains developpments suivant les polynômes de la forme de S. Bernstein, I, II, C.R. Acad. Sci. URSS, pp. 563-568, pp. 595-600, 1930.
Lorentz, G.G., Bernstein Polynomials, 2nd edition, Chelsea Publ., New York, 1986.
Nagel, J., Asymptotic properties of powers of Kantorovic operators, J. Approx. Theory, 36, pp. 268-275, 1982, https://doi.org/10.1016/0021-9045(82)90046-6 DOI: https://doi.org/10.1016/0021-9045(82)90046-6
Nagel, J., Kantorovic operators of second order, Monatsh. Math., 95, pp. 33-44, 1983, https://doi.org/10.1007/bf01301146 DOI: https://doi.org/10.1007/BF01301146
Razi, Q., Approximation of a function by Kantorovich type operators, Mat. Vest., 41, pp. 183-192, 1989.
Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine. Math. Pures Appl., 13, pp. 1173-1194, 1968.
Stancu, D.D., On a generalization of Bernstein polynomials (in Romanian), Stud. Univ. "Babeş-Bolyai", ser. Math., 14, No. 2, pp. 31-44, 1969.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.