Solving inverse problems via weak contractive maps
DOI:
https://doi.org/10.33993/jnaat372-894Keywords:
weak contractive maps, inverse problemsAbstract
We prove a "collage'' theorem for weak contractive maps and we use it for inverse problems.Downloads
References
Berinde, V., Approximating fixed points of weak contractions using Picard iteratioon, Nonlinear Analysis Forum, 9, pp. 43-53, 2004.
Berinde, M. and Berinde, V., On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326, pp. 772-782, 2007, https://doi.org/10.1016/j.jmaa.2006.03.016 DOI: https://doi.org/10.1016/j.jmaa.2006.03.016
Kunze, H.E. and Vrscay, E.R., Solving inverse problems for ordinary differential equations using the Picard contraction mapping, Inverse Problems, 15, pp. 745-770, 1999, https://doi.org/10.1088/0266-5611/15/3/308 DOI: https://doi.org/10.1088/0266-5611/15/3/308
Kunze, H.E. and Gomes, S., Solving an inverse problem for Urison-type integral equations using Banach's fixed point theorem, Inverse Problems, 19, pp. 411-418, 2003, https://doi.org/10.1088/0266-5611/19/2/310 DOI: https://doi.org/10.1088/0266-5611/19/2/310
Kunze, H.E., Hicken, J.E. and Vrscay, E.R., Inverse problems for ODEs using contraction maps and suboptimality for the `collage method', Inverse Problems, 20, pp. 977-991, 2004, https://doi.org/10.1088/0266-5611/20/3/019 DOI: https://doi.org/10.1088/0266-5611/20/3/019
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.