On the convergence of Steffensen-type methods using recurrent functions nonexpansive mappings
DOI:
https://doi.org/10.33993/jnaat382-908Keywords:
Steffensen-type method, recurrent functions, Banach space, semilocal convergenceAbstract
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Steffensen-type methods (STM) in a Banach space setting. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases[1]-[5], [12], [14]-[17], [23], [24], [26]. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.Downloads
References
Argyros, I.K., The secant method and fixed points of nonlinear operators, Monatshefte für Math., 106, pp. 85-94, 1988, https://doi.org/10.1007/bf01298829 DOI: https://doi.org/10.1007/BF01298829
Argyros, I.K., The theory and application of abstract polynomial equations, St.Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A.
Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298, pp. 374-397, 2004, https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008
Argyros, I.K., Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007, https://doi.org/10.1016/s1570-579x(07)x8020-0 DOI: https://doi.org/10.1016/S1570-579X(07)X8020-0
Argyros, I.K., On a class of Newton-like methods for solving nonlinear equations, J. Comput. Appl. Math., 228, pp. 115-122, 2009, https://doi.org/10.1016/j.cam.2008.08.042 DOI: https://doi.org/10.1016/j.cam.2008.08.042
Chandrasekhar, S., Radiative transfer, Dover Publ., New York, 1960.
Chen, X., On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms, Ann. Inst. Statist. Math., 42, pp. 387-401, 1990, https://doi.org/10.1007/bf00050844 DOI: https://doi.org/10.1007/BF00050844
Chen, X. and Yamamoto, T., Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optim., 10, pp. 37-48, 1989, https://doi.org/10.1080/01630568908816289 DOI: https://doi.org/10.1080/01630568908816289
Chen, Y. and Cai, D., Inexact overlapped block Broyden methods for solving nonlinear equations, Appl. Math. Comput., 136, pp. 215-228, 2003, https://doi.org/10.1016/s0096-3003(02)00026-7 DOI: https://doi.org/10.1016/S0096-3003(02)00026-7
Dennis, J.E., Toward a unified convergence theory for Newton--like methods, Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York, pp. 425-472, 1971, https://doi.org/10.1016/b978-0-12-576350-9.50010-2 DOI: https://doi.org/10.1016/B978-0-12-576350-9.50010-2
Deuflhard, P., Newton methods for nonlinear problems. Affine invariance and adaptive algorithms, Springer Series in Computational Mathematics, 35, Springer-Verlag, Berlin, 2004.
Deuflhard, P. and Heindl, G., Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal., 16, pp. 1-10, 1979, https://doi.org/10.1137/0716001 DOI: https://doi.org/10.1137/0716001
Huang, Z., A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math., 47, pp. 211-217, 1993, https://doi.org/10.1016/0377-0427(93)90004-u DOI: https://doi.org/10.1016/0377-0427(93)90004-U
Kantorovich, L.V. and Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
Păvăloiu, I., Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires, Rev. Roumaine Math. Pures Appl., 13(6), pp. 857-861, 1968.
Păvăloiu, I., Introduction in the theory of approximation of equations solutions, Dacia Ed., Cluj-Napoca, 1976.
Păvăloiu, I., On the convergency of a Steffensen-type method, Seminar on Mathematical Analysis, pp. 121-126, Preprint, pp. 91-7, "Babeş-Bolyai" Univ., Cluj-Napoca, 1991.
Li, D. and Fukushima, M., Globally convergent Broyden-like methods for semismooth equations and applications to VIP, NCP and MCP, Optimization and numerical algebra (Nanjing, 1999), Ann. Oper. Res., 103, pp. 71-97, 2001.
Ma, C., A smoothing Broyden-like method for the mixed complementarity problems, Math. Comput. Modelling, 41, pp. 523-538, 2005, https://doi.org/10.1016/j.mcm.2003.12.013 DOI: https://doi.org/10.1016/j.mcm.2003.12.013
Miel, G.J., Unified error analysis for Newton-type methods, Numer. Math., 33, pp. 391-396, 1979, https://doi.org/10.1007/bf01399322 DOI: https://doi.org/10.1007/BF01399322
Miel, G.J., Majorizing sequences and error bounds for iterative methods, Math. Comp., 34, pp. 185-202, 1980, https://doi.org/10.1090/s0025-5718-1980-0551297-4 ??? https://doi.org/10.2307/2006227 DOI: https://doi.org/10.1090/S0025-5718-1980-0551297-4
Moret, I., A note on Newton type iterative methods, Computing, 33, pp. 65-73, 1984, https://doi.org/10.1007/bf02243076 DOI: https://doi.org/10.1007/BF02243076
Potra, F.A., Sharp error bounds for a class of Newton-like methods, Libertas Mathematica, 5, pp. 71-84, 1985.
Ulm, S. Ju., A generalization of Steffensen's method for solving non-linear operator equations, (Russian), Z. Vycisl. Mat. i Mat. Fiz., 4, pp. 1093-1097, 1964.
Rheinboldt, W.C., A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal., 5, pp. 42-63, 1968, https://doi.org/10.1137/0705003 DOI: https://doi.org/10.1137/0705003
Yamamoto, T., A convergence theorem for Newton-like methods in Banach spaces, Numer. Math., 51, pp. 545-557, 1987, https://doi.org/10.1137/0705003 DOI: https://doi.org/10.1007/BF01400355
Zabrejko, P.P. and Nguen, D.F., The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. Optim., 9, pp. 671-684, 1987, https://doi.org/10.1080/01630568708816254 DOI: https://doi.org/10.1080/01630568708816254
Zincenko, A.I., Some approximate methods of solving equations with non-differentiable operators, (Ukrainian), Dopovidi Akad. Nauk Ukraïn. RSR, pp. 156-161, 1963.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.