The Kantorovich form of some extensions for the Szász-Mirakjan operators
DOI:
https://doi.org/10.33993/jnaat391-916Keywords:
Szász-Mirakjan operators, Kantorovich operators, Bohman-Korovkin theorem, modulus of continuity, Shisha-Mond theorem, degree of approximation, parametric extension, Korovkin theorem for the bivariate case, bivariate modulus of continuityAbstract
Recently, C. Mortici defined a class of linear and positive operators depending on a certain function \(\varphi\). These operators generalize the well known Szász-Mirakjan operators. A convergence theorem for the defined sequence by the mentioned operators was given.Other interesting approximation properties of these generalized Szász-Mirakjan operators and also their bivariate form were obtained by D. Bărbosu, O. T. Pop and D. Miclăuș.In the present paper we are dealing with the Kantorovich form of the generalized Szász-Mirakjan operators. We construct the Kantorovich associated operators and then we establish a convergence theorem for the defined operators. The degree of approximation is expressed in terms of the modulus of continuity. Next, we construct the bivariate and respectively the GBS corresponding operators and we establish some of their approximation properties.Downloads
References
Agratini, O., Approximation by linear operators, Presa Universitară Clujeană, Cluj-Napoca, 2000 (in Romanian).
Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and Its Applications, de Gruyter Series in Mathematics, 17, Walter de Gruyter & Co., Berlin, New York, 1994. DOI: https://doi.org/10.1515/9783110884586
Badea, I., Modulus of continuity in the Bogel sense and some applications in approximation by an operator of Bernstein type, Studia Univ. "Babeş-Bolyai", Ser. Math. Mech., 4 (2), pp. 69-78, 1973 (in Romanian).
Badea, C. and Cottin, C., Korovkin-type Theorems for Generalized Boolean Sum Operators, Colloquia Mathematica Societatis "Janos Bolyai", Approximation Theory, Kecskemét (Hungary), 58, pp. 51-67, 1990.
Badea, C., Badea, I. and Gonska, H. H., A test function theorem and approximation by pseudopolynomials, Bull. Australl. Math. Soc., 34, pp. 53-64, 1986. https://doi.org/10.1017/s0004972700004494 DOI: https://doi.org/10.1017/S0004972700004494
Badea, C., Badea, I., Cottin, C. and Gonska, H. H., Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl., 4, pp. 95-108, 1988.
Bărbosu, D., The functions approximation of more variables by boolean sums of linear interpolation type operators, Ed. Risoprint, Cluj-Napoca, 2002 (in Romanian).
Bărbosu, D., Pop, O. T. and Miclăuş, D., On some extensions for the Szász-Mirakjan operators, Annals of Oradea University, to appear.
Becker, M., Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27 (1), pp. 127-142, 1978. DOI: https://doi.org/10.1007/978-3-0348-7180-8_28
Bögel, K., Mehrdimensionalle Differentiation von Funktionen mehrer Verändlicher, J. R. Angew. Math., 170, pp. 197-217, 1937. DOI: https://doi.org/10.1515/crll.1934.170.197
Ciupa, A. and Gavrea, I., On a Favard-Szász type operator, Studia Univ. "Babeş-Bolyai", Mathematica, 34, pp. 39-46, 1994.
Delvos, F. J. and Schempp, W., Boolean Methods in Interpolation and Approximation, Longman Scientific and Technical, 1989.
Ditzian, Z. and Totik, V., Moduli of Smoothness, Springer Verlag, Berlin, 1987. DOI: https://doi.org/10.1007/978-1-4612-4778-4
Favard, J., Sur les multiplicateurs d'interpolation, Journal Pures Appl., 23 (9), pp. 219-247, 1944.
Jakimovski, A. and Leviatan, D., Generalized Szász operators for the approximation in the infinite interval, Mathematica (Cluj), 34, pp. 97-103, 1969.
Kantorovich, L. V., Sur certain développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. URSS, pp. 563-568, 595-600, 1930.
Miclăuş, D., The Voronovskaja type theorem for the Szász-Mirakjan-Kantorovich operators, Journal of Science and Arts, 2 (13), pp. 257-260, 2010.
Mirakjan, G. M., Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31, pp. 201-205, 1941.
Mortici, C., An Extension of the Szász-Mirakjan Operators, An. Şt. Univ. Ovidius Constanţa, 17 (1), pp. 137-144, 2009.
Pop, O. T., Bărbosu, D. and Miclăuş, D., The Voronovskaja type theorem for an extension of Szász-Mirakjan operators, Demonstratio Mathematica, to appear.
Shisha, O. and Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60, pp. 1196-1200, 1968. https://doi.org/10.1073/pnas.60.4.1196 DOI: https://doi.org/10.1073/pnas.60.4.1196
Stancu, D. D., Approximation of function by a new class of linear polynomial operators, Rev. Roum. Math. Pures et Appl., 13, pp. 1173-1194, 1968.
Stancu, D. D., Coman, Gh., Agratini, O. and Tr ambiţaş, R., Numerical Analysis and Approximation Theory, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (in Romanian).
Stancu, F., On the remainder term in approximation formula by univariate and bivariate Mirakjan operators, An. Şt. Univ. "Al. I. Cuza" Iaşi, XIV, pp. 415-422, 1968 (in Romanian).
Szasz, O., Generalization of Bernstein's polynomials to the infinite intervals, J. Res. Nat. Bur. Standards, 45, pp. 239-245, 1950. https://doi.org/10.6028/jres.045.024 DOI: https://doi.org/10.6028/jres.045.024
Totik, V., Uniform approximation by positive operators on infinite intervals, Analysis Mathematica, 10, pp. 163-182, 1984. https://doi.org/10.1007/bf02350525 DOI: https://doi.org/10.1007/BF02350525
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.