The approximation of bivariate functions by bivariate operators and GBS operators
DOI:
https://doi.org/10.33993/jnaat401-952Keywords:
linear positive operators, bivariate operators, GBS operators, Voronovskaja-type theorem, approximation theorem, generalized boolean sum operatorAbstract
In this paper we demonstrate a general approximation theorem for the bivariate functions by bivariate operators and GBS (Generalized Boolean Sum) operators.Downloads
References
Badea, C. and Cottin, C., Korovkin-type Theorems for Generalized Boolean Sum Operators, Colloquia Mathematica Societatis János Bolyai, 58, Approximation Theory, Kecskemét (Hungary), pp. 51-67, 1990.
Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx., 34, No. 1, pp. 79-91, 2005.
Pop, O. T., About some linear and positive operators defined by infinite sum, Dem. Math., XXXIX, No. 2, pp. 377-388, 2006.https://doi.org/10.1515/dema-2006-0216 DOI: https://doi.org/10.1515/dema-2006-0216
Pop, O. T., About operator of Bleimann, Butzer and Hahn, Anal. Univ. Timişoara, XLIII, Fasc. 1, pp. 117-127, 2005.
Pop, O. T., The generalization of Voronovskaja's theorem for a class of bivariate operators, anal. Univ. Oradea, Fasc. Matematica, Tom XV, pp. 155-169, 2008.
Pop, O. T., About a general property for a class of linear positive operators and applications, Rev. Anal. Num. Théor. Approx., 34, No. 2, pp.175-180, 2005.
Pop, O. T., The generalization of Voronovskaja's theorem for a class of bivariate operators defined by infinite sum, Studia Univ. "Babeş-Bolyai", Mathematica LIII, No. 2, pp.85-107, 2008.
Pop, O. T., Voronovskaja-type theorems and approximation theorems for a class of GBS operators, Fasc. Math., 42, pp. 91-108, 2009.
Pop, O. T., Voronovskaja-type theorem for certain GBS operators, Glasnik Matematički, 43 (63), pp. 179-194, 2008 https://doi.org/10.3336/gm.43.1.12. DOI: https://doi.org/10.3336/gm.43.1.12
Stancu, D. D., Coman, Gh., Agratini, O. and Trîmbiţaş, R., Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (in Romanian).
Timan, A. F., Theory of Approximation of Functions of Real Variable, New York: Macmillan Co. 1963, MR22#8257. DOI: https://doi.org/10.1016/B978-0-08-009929-3.50008-7
Voronovskaja, E., Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, C. R. Acad. Sci. URSS, pp. 79-85, 1932.
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.