Saturation results for the Lagrange max-product interpolation operator based on equidistant knots
DOI:
https://doi.org/10.33993/jnaat411-966Keywords:
Lagrange max-product interpolation operator, saturation order, local inverse resultAbstract
In this paper we obtain the saturation order and a local inverse result in the approximation by the Lagrange max-product interpolation operator based on equidistant knots.Downloads
References
B. Bede and S.G. Gal, Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind, J. Concrete and Applicable Mathematics, 8, no. 2, pp. 193-207, 2010.
B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. Math. Sci., 2009, Article ID 590589, 26 pages, https://doi.org/10.1155/2009/590589 DOI: https://doi.org/10.1155/2009/590589
B. Bede, L. Coroianu and S.G. Gal, Approximation by truncated Favard-Szász-Mirakjan operator of max-product kind, Demonstratio Mathematica, XLIV, no. 1, pp. 105-122, 2011, https://doi.org/10.1515/dema-2013-0300 DOI: https://doi.org/10.1515/dema-2013-0300
B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the nonlinear Bleimann-Butzer-Hahn operators of max-product kind, Comment. Math. Univ. Carol., 51, no. 3, pp. 397-415, 2010.
B. Bede, L. Coroianu and S.G. Gal Approximation and shape preserving properties of the nonlinear Meyer-Konig and Zeller operator of max-product kind, Numerical Functional Analysis and Optimization, 31, no. 3, pp. 232-253, 2010. https://doi.org/10.1080/01630561003757686 DOI: https://doi.org/10.1080/01630561003757686
B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the truncated Baskakov operator of max-product kind, Revista de la Union Matematica Argentina, 52, no. 1, pp. 89-107, 2011.
B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the nonlinear Baskakov operator of max-product kind, Studia Univ. Babeş-Bolyai, ser. Math., LV, pp. 193-218, 2010. DOI: https://doi.org/10.2298/FIL1003055B
S. Bernstein, Quelques remarques sur l'interpolation, Math. Ann., 79, no.1-2, pp. 1-12, 1918. https://doi.org/10.1007/bf01457173 DOI: https://doi.org/10.1007/BF01457173
E. Borel, Sur l'interpolation, C.R. Acad. Sci. Paris, 124, pp. 673-676, 1897.
S. Cobzas and I. Muntean, Condensation of singularities and divergence results in approximation theory, J. Approx. Theory, 31, no. 2, pp. 138-153, 1980. https://doi.org/10.1016/0021-9045(81)90038-1 DOI: https://doi.org/10.1016/0021-9045(81)90038-1
L. Coroianu and S.G. Gal, Approximation by nonlinear Lagrange interpolation operators of max-product kind on Chebyshev knots of second kind, J. Comp. Anal. Appl., 13, no. 2, pp. 211-224, 2010.
L. Coroianu and S.G. Gal, Approximation by nonlinear Hermite-Fejér interpolation operators of max-product kind on Chebyshev nodes, Revue d'Anal. Numér. Théor. Approx. (Cluj), 39, no.1, pp. 29-39, 2010, http://ictp.acad.ro/jnaat/journal/article/view/2010-vol39-no1-art3
L. Coroianu and S.G. Gal, Approximation by max-product Lagrange interpolation operators, Studia Univ. "Babeş-Bolyai", ser. Math., LVI, no. 2, pp. 1-11, 2011.
L. Coroianu and S.G. Gal, Classes of functions with improved estimates in approximation by the max-product Bernstein operator, Analysis and Applications, 9, no. 3, pp. 249-274, 2011. https://doi.org/10.1142/s0219530511001856 DOI: https://doi.org/10.1142/S0219530511001856
S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008. https://doi.org/10.1007/978-0-8176-4703-2 DOI: https://doi.org/10.1007/978-0-8176-4703-2
I. Muntean, The Lagrange interpolation operators are densely divergent, Studia Univ. "Babes-Bolyai" (Cluj), ser. math. 21, pp. 28-30, 1976.
J. Szabados and P. Vértesi, Interpolation of Functions, World Scientific, Singapore, New Jersey, London, Hong Kong, 1990. https://doi.org/10.1142/0861 DOI: https://doi.org/10.1142/0861
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.