Remarks on the quenching estimate for a nonlocal diffusion problem with a reaction term
DOI:
https://doi.org/10.33993/jnaat412-975Keywords:
nonlocal diffusion, quenching, continuity, numerical quenching time, reaction-diffusion equationAbstract
In this paper, we address the following initial value problem\[\begin{array}{ll}\hbox{\(u_t=\int_{\Omega}J(x-y)(u(y, t)-u(x, t)){\rm d}y+f(u(x, t))\quad \mbox{in}\quad \overline{\Omega}\times(0,T)\),} \\\hbox{\(u(x,0)=u_{0}(x)\geq 0\quad \mbox{in}\quad \overline{\Omega}\),} \\\end{array}\]where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\) with smooth boundary \(\partial\Omega\), \(f: (-\infty, b)\rightarrow (0, \infty)\) is a \(C^1\) convex nondecreasing function, \(\lim_{s\rightarrow b^{-}}f(s)=\infty\), \(\int^{\infty}\tfrac{{\rm d}\sigma}{f(\sigma)}<\infty\), with \(b\) a positive constant, \(J:\mathbb{R}^N\rightarrow \mathbb{R}\) is a kernel which is measurable, nonnegative and bounded in \(\mathbb{R}^N\). Under some conditions, we show that the solution of a perturbed form of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial datum. Finally, we give some numerical results to illustrate our analysis.Downloads
References
A. Acker and B. Kawohl, Remarks on quenching, Nonl. Anal. TMA, 13 (1989), pp. 53-61. https://doi.org/10.1016/0362-546x(89)90034-5 DOI: https://doi.org/10.1016/0362-546X(89)90034-5
F. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations, J. Evol. Equations, 8(1) (2008), pp. 189-215. https://doi.org/10.1007/s00028-007-0377-9 DOI: https://doi.org/10.1007/s00028-007-0377-9
F. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann boundary conditions, Preprint.
P. Bates and A. Chmaj, An intergrodifferential model for phase transitions: stationary solutions in higher dimensions, J. Statistical Phys., 95 (1999), pp. 1119-1139. https://doi.org/10.1023/a:1004514803625 DOI: https://doi.org/10.1023/A:1004514803625
P. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Rat. Mech. Anal., 150 (1999), pp. 281-305, https://doi.org/10.1007/s002050050189 DOI: https://doi.org/10.1007/s002050050189
P. Bates and J. Han, The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation, J. Math. Anal. Appl., 311(1) (2005), pp. 289-312. https://doi.org/10.1016/j.jmaa.2005.02.041 DOI: https://doi.org/10.1016/j.jmaa.2005.02.041
P. Bates and J. Han, The Neumann boundary problem for a nonlocal Cahn-Hilliard equation, J. Diff. Equat., 212 (2005), pp. 235-277. https://doi.org/10.1016/j.jde.2004.07.003 DOI: https://doi.org/10.1016/j.jde.2004.07.003
P. Bates, P. Fife and X. Wang, Travelling waves in a convolution model for phase transitions, Arch. Rat. Mech. Anal., 138 (1997), pp. 105-136. https://doi.org/10.1007/s002050050037 DOI: https://doi.org/10.1007/s002050050037
T.K. Boni, Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris, Sér. I, Math., 333 (2001), pp. 795-800. https://doi.org/10.1016/s0764-4442(01)02078-x DOI: https://doi.org/10.1016/S0764-4442(01)02078-X
T.K. Boni, On quenching of solutions for some semilinear parabolic equation of second order, Bull. Belg. Maths. Soc., 7 (2000), pp. 73-95. DOI: https://doi.org/10.36045/bbms/1103055721
C. Carrilo and P. Fife, Spacial effects in discrete generation population models, J. Math. Bio., 50(2) (2005), pp. 161-188. https://doi.org/10.1007/s00285-004-0284-4 DOI: https://doi.org/10.1007/s00285-004-0284-4
E. Chasseigne, M. Chaves and J.D. Rossi, Asymptotic behavior for nonlocal diffusion equations whose solutions develop a free boundary, J. Math. Pures et Appl., 86 (2006), pp. 271-291, https://doi.org/10.1016/j.matpur.2006.04.005 DOI: https://doi.org/10.1016/j.matpur.2006.04.005
X. Chen, Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations, Adv. Diff. Equat., 2 (1997), pp. 128-160. DOI: https://doi.org/10.57262/ade/1366809230
X. Y. Chen and H. Matano, Convergence, asymptotic periodicity and finite point blow up in one-dimensional semilinear heat equations, J. Diff. Equat., 78 (1989), pp. 160-190, https://doi.org/10.1016/0022-0396(89)90081-8 DOI: https://doi.org/10.1016/0022-0396(89)90081-8
C. Cortazar, M. Elgueta and J. D. Rossi, A non-local diffusuon equation whose solutions develop a free boundary, Ann. Henry Poincare, 6(2) (2005), pp. 269-281, https://doi.org/10.1007/s00023-005-0206-z DOI: https://doi.org/10.1007/s00023-005-0206-z
C. Cortazar, M. Elgueta and J. D. Rossi, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rat. Mech. Anal., 187(1) (2008), pp. 137-156, https://doi.org/10.1007/s00205-007-0062-8 DOI: https://doi.org/10.1007/s00205-007-0062-8
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, Boundary fluxes for non-local diffusion, J. Diff. Equat., 234 (2007), pp. 360-390, https://doi.org/10.1016/j.jde.2006.12.002 DOI: https://doi.org/10.1016/j.jde.2006.12.002
K. Deng and C.A. Roberts, Quenching for a diffusive equation a concentrate singularity, Diff. Int. Equat., 10 (1997), pp. 369-379. DOI: https://doi.org/10.57262/die/1367526343
P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions. Trends in nonlinear analysis, Springer, Berlin, 2003, pp. 153-191, https://doi.org/10.1007/978-3-662-05281-5_3 DOI: https://doi.org/10.1007/978-3-662-05281-5_3
P. Fife and X. Wang, A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions, Adv. Diff. Equat., 3(1) (1998), pp. 85-110. DOI: https://doi.org/10.57262/ade/1366399906
M. Fila, B. Kawold and H.A.Levine, Quenching for quasilinear equation, Comm. Part. Diff. Equat., 17 (1992), pp. 593-614.
A. Friedman and B. McLeod, Blow-up of positive solution of semilinear heat equations, Indiana Univ. Math. J., 34(2) (1985), pp. 425-447, https://doi.org/10.1512/iumj.1985.34.34025 DOI: https://doi.org/10.1512/iumj.1985.34.34025
J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edin. Math. Soc., 40 (1997), pp. 427-456, https://doi.org/10.1017/s0013091500023932 DOI: https://doi.org/10.1017/S0013091500023932
J. Guo, On a quenching problem with Robin boundary condition, Nonl. Anal. TMA., 17 (1991), pp. 803-809, https://doi.org/10.1016/0362-546x(91)90154-s DOI: https://doi.org/10.1016/0362-546X(91)90154-S
L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Functional Analysis, 251(2) (1991), pp. 399-437, https://doi.org/10.1016/j.jfa.2007.07.013 DOI: https://doi.org/10.1016/j.jfa.2007.07.013
C. M. Kirk and C. A. Roberts, A review of quenching results in the context of nonlinear volterra equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal., 10 (2003), pp. 343-356.
H. A. Levine, Quenching, nonquenching and beyond quenching for solution of some parabolic equation, Annali Math. Pura Appl., 155 (1990), pp. 243-260, https://doi.org/10.1007/bf01765943
H. A. Levine, Quenching, nonquenching and beyond quenching for solution of some parabolic equation, Annali Math. Pura Appl., 155 (1990), pp. 243-260, https://doi.org/10.1007/BF01765943 DOI: https://doi.org/10.1007/BF01765943
D. Nabongo and T. K. Boni, Blow-up time for a nonlocal diffusion problem with Dirichlet boundary conditions, Comm. Anal. Geom., 16, pp. 865-882, https://doi.org/10.4310/cag.2008.v16.n4.a6 DOI: https://doi.org/10.4310/CAG.2008.v16.n4.a6
D. Phillips, Existence of solutions of quenching problems, Appl. Anal., Berlin., 24 (1987), pp. 253-264, https://doi.org/10.1080/00036818708839668 DOI: https://doi.org/10.1080/00036818708839668
M. H. Protter and H. F. Weinberger, Maximum principle in diferential equations, Prentice Hall, Englewood Cliffs, NJ, 1957.
M. Perez-LLanos and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term, Nonl. Anal. TMA, 70 (2009), pp. 1629-1640 https://doi.org/10.1016/j.na.2008.02.076, DOI: https://doi.org/10.1016/j.na.2008.02.076
W. Walter, Differential-und Integral-Ungleucungen, Springer, Berlin, 1964. DOI: https://doi.org/10.1007/978-3-662-42030-0
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.