On Fatou type convergence of higher derivatives of certain nonlinear singular integral operators
DOI:
https://doi.org/10.33993/jnaat421-981Keywords:
nonlinear singular integral operator, pointwise convergence, Fatou type convergenceAbstract
The present paper concerns with the Fatou type convergence properties of the \(r-th\) and \((r+1)-th\) derivatives of the nonlinear singular integral operators defined as \[ \left( I_{\lambda}f\right) (x)=\int\limits_{a}^{b}K_{\lambda}(t-x,f(t))\,{\rm d}t,\,\,\,\,\,\,\,x\in\left( a,b\right) , \] acting on functions defined on an arbitrary interval \(\left( a,b\right) ,\) where the kernel \(K_{\lambda}\) satisfies some suitable assumptions. The present study is a continuation and extension of the results established in the paper [7].Downloads
References
C. Bardaro, H. Karsli and G. Vinti, On pointwise convergence of linear integral operators with homogeneous kernels, Integral Transforms and Special Functions, 19(6) (2008), pp. 429-439, https://doi.org/10.1080/10652460801936648 DOI: https://doi.org/10.1080/10652460801936648
C. Bardaro, H. Karsli and G. Vinti, Nonlinear integral operators with homogeneous kernels: pointwise approximation theorems, Applicable Analysis, 90 (2011) No. 3-4, pp. 463-474,https://doi.org/10.1080/00036811.2010.499506. DOI: https://doi.org/10.1080/00036811.2010.499506
C. Bardaro, J. Musielak and G. Vinti, Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, 9 (2003), xii + 201 pp. DOI: https://doi.org/10.1515/9783110199277
Butzer P.L. and R.J. Nessel, Fourier Analysis and Approximation, V.1, Academic Press, New York, London, 1971. DOI: https://doi.org/10.1007/978-3-0348-7448-9_1
A.D. Gadjiev, On convergence of integral operators depending on two parameters, Dokl. Acad. Nauk. Azerb. SSR, XIX (1963) No. 12, pp. 3-7.
H. Karsli, Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters, Applicable Analysis, 85 (2006) No. 6-7, pp. 781-791, https://doi.org/10.1080/00036810600712665 DOI: https://doi.org/10.1080/00036810600712665
H. Karsli, Convergence of the derivatives of nonlinear singular integral operators, J. Math. Anal. Approx. Theory, 2 (2007) No. 1, pp. 53-61.
H. Karsli, On approximation properties of a class of convolution type nonlinear singular integral operators, Georgian Math. Jour., 15 (2008), No. 1, pp. 77-86. DOI: https://doi.org/10.1515/GMJ.2008.77
H. Karsli and Gupta V., Rate of convergence by nonlinear integral operators for functions of bounded variation, Calcolo, 45, (2) (2008), pp. 87-99, https://doi.org/10.1007/s10092-008-0145-4 DOI: https://doi.org/10.1007/s10092-008-0145-4
J. Musielak, On some approximation problems in modular spaces. In Constructive Function Theory 1981 ( Proc. Int. Conf. Varna, June 1-5, 1981), pp. 455-461, Publ. House Bulgarian Acad. Sci., Sofia 1983.
T. Swiderski and E. Wachnicki, Nonlinear Singular Integrals depending on two parameters, Commentationes Math., XL (2000), pp. 181-189.
R. Taberski, Singular integrals depending on two parameters, Rocznicki Polskiego towarzystwa matematycznego, Seria I. Prace matematyczne, VII (1962), pp. 173-179.
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.