On the existence and uniqueness of extensions of semi-Hölder real-valued functions
DOI:
https://doi.org/10.33993/jnaat392-1032Keywords:
extensions, semi-Lipschitz functions, semi-Hölder functions, best approximation, quasi-metric spacesAbstract
Not available.Downloads
References
S. Cobzaş, Phelps type duality reuslts in best approximation, Rev. Anal. Numér. Théor. Approx., 31, no. 1., pp. 29-43, 2002, http://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art5
J. Collins and J. Zimmer, An asymmetric Arzelā-Ascoli Theorem, Topology Appl., 154, no. 11, pp. 2312-2322, 2007. DOI: https://doi.org/10.1016/j.topol.2007.03.006
P. Flecther and W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
M.G. Krein and A.A. Nudel'man, The Markov Moment Problem and Extremum Problems, Nauka, Moscow 1973 (in Russian), English translation: American Mathematical Society, Providence, R.I., 1977.
E. Matouškova, Extensions of continuous and Lipschitz functions, Canad. Math. Bull., 43, no. 2, pp. 208-217, 2000, https://doi.org/10.4153/cmb-2000-028-0 DOI: https://doi.org/10.4153/CMB-2000-028-0
E.T. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837-842, 1934, https://doi.org/10.1090/s0002-9904-1934-05978-0 DOI: https://doi.org/10.1090/S0002-9904-1934-05978-0
A. Mennucci, On asymmetric distances, Tehnical report, Scuola Normale Superiore, Pisa, 2004.
C. Mustăţa, Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19, no. 3, pp. 222-230, 1977. DOI: https://doi.org/10.1016/0021-9045(77)90053-3
C. Mustăţa, Extension of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., 30, no. 1, pp. 61-67, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art8
C. Mustăţa, A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiinţ. Univ. Baia Mare, Ser. B. Matematică-Informatică, 18, pp. 275-280, 2002.
C. Mustăţa, Extensions of semi-Hölder real valued functions on a quasi-metric space, Rev. Anal. Numér. Théor. Approx., 38, no. 2, pp. 164-169, 2009, http://ictp.acad.ro/jnaat/journal/article/view/2009-vol38-no2-art6
R.R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Numer. Math. Soc., 95, pp. 238-255, 1960, https://doi.org/10.1090/s0002-9947-1960-0113125-4 DOI: https://doi.org/10.1090/S0002-9947-1960-0113125-4
S. Romaguera and M. Sanchis, Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292-301, 2000, https://doi.org/10.1006/jath.1999.3439 DOI: https://doi.org/10.1006/jath.1999.3439
S. Romaguera and M. Sanchis, Properties of the normed cone of semi-Lipschitz functions, Acta Math. Hungar, 108, nos. 1-2, pp. 55-70, 2005, https://doi.org/10.1007/s10474-005-0208-9 DOI: https://doi.org/10.1007/s10474-005-0208-9
J.H. Wells and L.R. Williams, Embeddings and Extensions in Analysis, Springer-Verlag, Berlin, 1975. DOI: https://doi.org/10.1007/978-3-642-66037-5
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.