On the existence and uniqueness of extensions of semi-Hölder real-valued functions

Authors

  • Costică Mustăţa Tiberiu Popoviciu Institute of Numerical Analysis, Romania

DOI:

https://doi.org/10.33993/jnaat392-1032

Keywords:

extensions, semi-Lipschitz functions, semi-Hölder functions, best approximation, quasi-metric spaces
Abstract views: 267

Abstract

Not available.

Downloads

Download data is not yet available.

References

S. Cobzaş, Phelps type duality reuslts in best approximation, Rev. Anal. Numér. Théor. Approx., 31, no. 1., pp. 29-43, 2002, http://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art5

J. Collins and J. Zimmer, An asymmetric Arzelā-Ascoli Theorem, Topology Appl., 154, no. 11, pp. 2312-2322, 2007. DOI: https://doi.org/10.1016/j.topol.2007.03.006

P. Flecther and W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.

M.G. Krein and A.A. Nudel'man, The Markov Moment Problem and Extremum Problems, Nauka, Moscow 1973 (in Russian), English translation: American Mathematical Society, Providence, R.I., 1977.

E. Matouškova, Extensions of continuous and Lipschitz functions, Canad. Math. Bull., 43, no. 2, pp. 208-217, 2000, https://doi.org/10.4153/cmb-2000-028-0 DOI: https://doi.org/10.4153/CMB-2000-028-0

E.T. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837-842, 1934, https://doi.org/10.1090/s0002-9904-1934-05978-0 DOI: https://doi.org/10.1090/S0002-9904-1934-05978-0

A. Mennucci, On asymmetric distances, Tehnical report, Scuola Normale Superiore, Pisa, 2004.

C. Mustăţa, Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19, no. 3, pp. 222-230, 1977. DOI: https://doi.org/10.1016/0021-9045(77)90053-3

C. Mustăţa, Extension of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., 30, no. 1, pp. 61-67, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art8

C. Mustăţa, A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiinţ. Univ. Baia Mare, Ser. B. Matematică-Informatică, 18, pp. 275-280, 2002.

C. Mustăţa, Extensions of semi-Hölder real valued functions on a quasi-metric space, Rev. Anal. Numér. Théor. Approx., 38, no. 2, pp. 164-169, 2009, http://ictp.acad.ro/jnaat/journal/article/view/2009-vol38-no2-art6

R.R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Numer. Math. Soc., 95, pp. 238-255, 1960, https://doi.org/10.1090/s0002-9947-1960-0113125-4 DOI: https://doi.org/10.1090/S0002-9947-1960-0113125-4

S. Romaguera and M. Sanchis, Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292-301, 2000, https://doi.org/10.1006/jath.1999.3439 DOI: https://doi.org/10.1006/jath.1999.3439

S. Romaguera and M. Sanchis, Properties of the normed cone of semi-Lipschitz functions, Acta Math. Hungar, 108, nos. 1-2, pp. 55-70, 2005, https://doi.org/10.1007/s10474-005-0208-9 DOI: https://doi.org/10.1007/s10474-005-0208-9

J.H. Wells and L.R. Williams, Embeddings and Extensions in Analysis, Springer-Verlag, Berlin, 1975. DOI: https://doi.org/10.1007/978-3-642-66037-5

Downloads

Published

2010-08-01

Issue

Section

Articles

How to Cite

Mustăţa, C. (2010). On the existence and uniqueness of extensions of semi-Hölder real-valued functions. Rev. Anal. Numér. Théor. Approx., 39(2), 134-140. https://doi.org/10.33993/jnaat392-1032