A generalization of the Lupaș \(q\)-analogue of the Bernstein operator
DOI:
https://doi.org/10.33993/jnaat452-1090Keywords:
q-integers, Stancu operator, Korovkin’s theorem, rate of convergence, second order modulus of smoothness, limit operator, Lupaș q-analogue of the Bernstein operatorAbstract
We introduce a Stancu type generalization of the Lupaș \(q\)-analogue of the Bernstein operator via the parameter \(\alpha\). The construction of our operator is based on the generalization of Gauss identity involving \(q\)-integers. We establish the convergence of our sequence of operators in the strong operator topology to the identity, estimating the rate of convergence by using the second order modulus of smoothness. For \(\alpha\) and \(q\) fixed, we study the limit operator of our sequence of operators taking into account the relationship between two consecutive terms of the constructed sequence of operators.
Downloads
References
A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013. DOI: https://doi.org/10.1007/978-1-4614-6946-9
R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Z. Finta, Quantitative estimates for the Lupas q-analogue of the Bernstein operator, Demonstratio Math., 44 (2011), pp. 123-130. DOI: https://doi.org/10.1515/dema-2013-0286
V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002. DOI: https://doi.org/10.1007/978-1-4613-0071-7
A. Lupas, A q-analogue of the Bernstein operator, Babes-Bolyai University, Seminar on Numerical and Statistical Calculus, 9 (1987), 85-92.
G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350 (2009), pp. 50-55, http://dx.doi.org/10.1016/j.jmaa.2008.09.003 DOI: https://doi.org/10.1016/j.jmaa.2008.09.003
S. Ostrovska, The q-versions of the Bernstein operator: from mere analogies to further developments, Results Math., 69(3) (2016), pp. 275-295, http://dx.doi.org/10.1007/s00025-016-0530-2 DOI: https://doi.org/10.1007/s00025-016-0530-2
S. Ostrovska, On the Lupas q-analogue of the Bernstein operator, Rocky Mt. J. Math., 36 (2006) pp. 1615-1629, http://dx.doi.org/10.1216/rmjm/1181069386 DOI: https://doi.org/10.1216/rmjm/1181069386
G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), pp. 511-518.
T. Popoviciu, Asupra demonstratiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare, Academia Republicii Populare Romane, Lucrarile Sesiunii Generale Stiintifice din 2–12 iunie 1950 (in Romanian) [English title: On the proof of the Weierstrass theorem with the aid of the interpolation polynomials]. Available soon at http://ictp.acad.ro/popoviciu
D.D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13 (1968), pp. 1173-1194.
H. Wang, Y. Zhang, The rate of convergence of the Lupas q-analogue of the Bernstein operator, Abstr. Appl. Anal., 2014 (2014), Article ID 521709, 6 pages. DOI: https://doi.org/10.1155/2014/521709
H. Wang, Properties of convergence for ω,q-Bernstein polynomials, J. Math. Anal. Appl., 340(2) (2008), pp. 1096-1108, http://dx.doi.org/10.1016/j.jmaa.2007.09.004 DOI: https://doi.org/10.1016/j.jmaa.2007.09.004
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.