Return to Article Details A generalization of the Lupaș q-analogue of the Bernstein operator

A generalization of the Lupaş q-analogue of the Bernstein operator

Zoltán Finta

July 18, 2016.

“Babeş-Bolyai” University, Department of Mathematics, 1, M. Kogălniceanu St., 400084 Cluj-Napoca, Romania, e-mail: fzoltan@math.ubbcluj.ro.

We introduce a Stancu type generalization of the Lupaş q-analogue of the Bernstein operator via the parameter α. The construction of our operator is based on the generalization of the Gauss identity involving q-integers. When the parameters α and q depend on n, and satisfy some additional conditions, we establish the convergence of our sequence of operators in the strong operator topology to the identity, estimating the rate of convergence by using the second order modulus of smoothness. For α and q fixed parameters, we study the existence of the limit operator of our sequence of operators taking into account the relationship between two consecutive terms of the constructed sequence of operators. The rate of convergence in the uniform norm it is also estimated with the aid of the second order modulus of smoothness.

MSC. 41A36, 41A25.

Keywords. q-integers, Lupaş q-analogue of the Bernstein operator, Stancu operator, Korovkin’s theorem, rate of convergence, second order modulus of smoothness, limit operator.

1 Introduction

The development of q-calculus has led to the discovery of new Bernstein type operators involving q-integers. The first example in this direction was given by Lupaş [ 5 ] in 1987. The so-called q-Bernstein operators were introduced by Phillips [ 9 ] in 1997, and they mean another generalization of Bernstein operators based on the q-integers. Nowadays, q-Bernstein operators form an area of an intensive research. A survey of the obtained main results and references in this area during the first decade of study can be found in [ 7 ] . Nowadays, there are new papers on the subject constantly coming out and generalizations of q-Bernstein operators being studied. Different types of q-integral operators, q-Bernstein type integral operators and q-summation-integral operators were introduced and studied in [ 1 ] .

To present Lupaş operator, we recall some notions of the q-calculus (see [ 4 ] ). Let q>0. Then for each non-negative integer n, the q-integer [n]q and the q-factorial [n]q! are defined by [n]q=1+q++qn1 for n=1,2,, [0]q=0 and [n]q!=[1]q[2]q[n]q for n=1,2,, [0]q!=1. For integers n and k satisfying 0kn, the q-binomial coefficient is defined by

[nk]q=[n]q![k]q![nk]q!.

Further, we set

bn,k(q;x)=[nk]qqk(k1)/2xk(1x)nk(1x+xq)(1x+xqn1)

for k=0,1,,n.

Following Lupaş [ 5 ] (see also [ 8 ] ), the positive linear operator Rn,q:C[0,1]
C[0,1] given by

Rn,q(f;x)=k=0nbn,k(q;x)f([k]q[n]q)
1.1

is called the Lupaş q-analogue of the Bernstein operator. For q=1, we recover the well-known Bernstein operator defined by

Bn(f;x)=k=0n(nk)xk(1x)nkf(kn),
1.2

where fC[0,1], x[0,1] and n1. The papers [ 8 ] and [ 3 ] deal with the convergence properties of the operator (1.1) and the limit Lupaş q-analogue of the Bernstein operator, which is given for q(0,1) fixed by

R,q(f;x)=k=0f(1qk)qk(k1)/2(x/(1x))k(1q)k[k]q!j=0(1+qj(x/(1x))),

where x[0,1) and R,q(f;1)=f(1).

For fC[0,1], α0, q>0 and n1, we introduce a generalization of (1.1) as follows:

Un,qα(f;x)=k=0nbn,kα(q;x)f([k]q[n]q),
1.3

where

bn,kα(q;x)=[nk]qqk(k1)/2i=0k1(x+αqi[i]q)j=0nk1(1x+α[j]q)i=0n1(1x+xqi+α[i]q).
1.4

We note that an empty product in (1.4) denotes 1. For α=0, we recover the operator (1.1), and for q=1, we recover the Stancu operator [ 11 ] given by

Snα(f;x)=k=0n(nk)i=0k1(x+αi)j=0nk1(1x+αj)i=0n1(1+αi)f(kn).

When α=0 and q=1, we obtain the Bernstein operator (1.2). The parameters α and q may depend only on n. It is worth mentioning that another generalization of the Stancu operator is due to Nowak [ 6 ] involving q-integers. His generalization contains in special case the q-Bernstein operators of Phillips.

The goal of the paper is to study the approximation properties of the operators defined by (1.3)-(1.4). The construction of the new operator is based on the generalization of the well-known Gauss identity

i=0n1(x+qia)=i=0n[ni]qqi(i1)/2aixni
1.5

(see [ 4 , p. 15, (5.5) ] ). We establish the uniform convergence of Un,qα(f;x) to f(x) on [0,1], when α=αn and q=qn, and we give the rate of convergence by using the second order modulus of smoothness of fC[0,1] defined by

ω2(f;δ)=sup0<hδsupx[0,12h]|f(x+2h)2f(x+h)+f(x)|.
1.6

Finally, for α and q fixed, we prove the existence of the limit operator U,qα=limnUn,qα taking into account the relationship between two consecutive terms of the sequence {Un,qα(f;x)}n1. In this case the rate of convergence is also studied.

2 Auxiliary results

In the sequel we need some useful lemmas.

Lemma 2.1

For any n1, α0, q>0 and u,v real numbers, we have

i=0n1(v+uqi+α[i]q)=k=0n[nk]qqk(k1)/2i=0k1(u+αqi[i]q)j=0nk1(v+α[j]q).
2.1

Proof â–¼
We use induction on n. The equality (2.1) is evident for n=1. Let us assume that (2.1) holds for a given n. Then, by (2.1) and [n]q=[nk]q+qnk[k]q, we have
\lefteqni=0n(v+uqi+α[i]q)=(v+uqn+α[n]q)i=0n1(v+uqi+α[i]q)==k=0n(uqn+αqnk[k]q+v+α[nk]q)[nk]qqk(k1)/2i=0k1(u+αqi[i]q)×j=0nk1(v+α[j]q)=
=k=0n[nk]qqk(k1)/2qni=0k(u+αqi[i]q)j=0nk1(v+α[j]q)+k=0n[nk]qqk(k1)/2i=0k1(u+αqi[i]q)j=0nk(v+α[j]q)=k=0n1[nk]qqk(k1)/2qni=0k(u+αqi[i]q)j=0nk1(v+α[j]q)+qn(n1)/2qn×i=0n(u+αqi[i]q)+j=0n(v+α[j]q)+k=1n[nk]qqk(k1)/2i=0k1(u+αqi[i]q)j=0nk(v+α[j]q)=j=0n(v+α[j]q)+k=1n[nk1]qq(k1)(k2)/2qni=0k1(u+αqi[i]q)j=0nk(v+α[j]q)+k=1n[nk]qqk(k1)/2i=0k1(u+αqi[i]q)j=0nk(v+α[j]q)+q(n+1)n/2i=0n(u+αqi[i]q)=j=0n(v+α[j]q)+k=1n([nk1]qq(k1)(k2)/2qnqk(k1)/2+[nk]q)×qk(k1)/2i=0k1(u+αqi[i]q)j=0nk(v+α[j]q)+q(n+1)n/2i=0n(u+αqi[i]q)=k=0n+1[n+1k]qqk(k1)/2i=0k1(u+αqi[i]q)j=0nk(v+α[j]q),

because

[n+10]q=[n+1n+1]q=1

and

[nk1]qq(k1)(k2)/2qnqk(k1)/2+[nk]q=[nk1]qqnk+1+[nk]q=[n+1k]q

for k=1,2,,n. This completes the proof of the lemma.

Remark 2.1

For α=0, the identity (2.1) reduces to the Gauss identity (1.5). â–¡

Lemma 2.2

Let α0 and q>0. For the test functions ei(x)=xi, where i{0,1,2} and x[0,1], we have Un,qα(e0;x)=1, Un,qα(e1;x)=x and

Un,qα(e2;x)=x2+x(1x)[n]q{1qx(1qn1)α[n1]q1x+xqn1+α[n1]q+q2x(1qn1)α[n1]q1x+xqn1+α[n1]qx(1qn2)α[n2]q1x+xqn2+α[n2]q+(1)n1qn1×x(1qn1)α[n1]q1x+xqn1+α[n1]qx(1qn2)α[n2]q1x+xqn2+α[n2]qx(1q)α[1]q1x+xq+α[1]q}.

Proof â–¼
Choosing u=x and v=1x in (2.1), we get, by (1.4), that k=0nbn,kα(q;x)=1. Hence, due to (1.3), we have Un,qα(e0;x)=k=0nbn,kα(q;x)=1.

Again, by (1.3) and (1.4), we obtain

Un,qα(e1;x)=k=0nbn,kα(q;x)[k]q[n]q=k=1n[n1k1]qqk(k1)/2i=0k1(x+αqi[i]q)j=0nk1(1x+α[j]q)i=0n1(1x+xqi+α[i]q)=k=0n1[n1k]qq(k+1)k/2i=0k(x+αqi[i]q)j=0nk2(1x+α[j]q)i=0n1(1x+xqi+α[i]q)=k=0n1qkx+αqk[k]q1x+xqn1+α[n1]qbn1,kα(q;x).

But xqk+α[k]q=x+[k]q(α(1q)x) and Un1,qα(e0;x)=1, therefore we have

Un,qα(e1;x)==k=0n1x+[k]q(α(1q)x)1x+xqn1+α[n1]qbn1,kα(q;x)=x1x+xqn1+α[n1]q+(α(1q)x)[n1]q1x+xqn1+α[n1]qk=0n1[k]q[n1]qbn1,kα(q;x)=x1x+xqn1+α[n1]q+x+xqn1+α[n1]q1x+xqn1+α[n1]qUn1,qα(e1;x).

For given α0, q>0 and x[0,1], for the sake of brevity, let us set ai=1x+xqi1+α[i1]q, i=1,2, Then, by (2.1), we have

Un,qα(e1;x)=xan+(11an)Un1,qα(e1;x).

Solving this recurrence relation, we find that

Un,qα(e1;x)=xan+xan1(11an)+xan2(11an)(11an1)++xa2(11an)(11an)(11a3)+(11an)(11an1)(11a2)U1,qα(e1;x)

Hence, by U1,qα(e1;x)=x, we get

Un,qα(e1;x)=
=x(1(11an))+x(1(11an1))(11an)+x(1(11an2))(11an)(11an1)++x(1(11a2))(11an)(11an1)(11a3)+x(11an)(11an1)(11a2)=xx(11an)+x(11an)x(11an)(11an1)+x(11an)(11an1)x(11an)(11an1)(11an2)++x(11an)(11an1)(11a3)x(11an)(11an1)(11a2)+x(11an)(11an1)(11a2)=x.

Further, in view of (1.3) and (1.4), we have

\lefteqnUn,qα(e2;x)=k=0nbn,kα(q;x)([k]q[n]q)2=k=1n[n1k1]qqk(k1)/2i=0k1(x+αqi[i]q)j=0nk1(1x+α[j]q)i=0n1(1x+xqi+α[i]q)[k]q[n]q=k=0n1[n1k]qq(k+1)k/2i=0k(x+αqi[i]q)j=0nk2(1x+α[j]q)i=0n1(1x+xqi+α[i]q)[k+1]q[n]q=k=0n1qkx+αqk[k]q1x+xqn1+α[n1]q1+q[k]q[n]qbn1,kα(q;x).

But (xqk+α[k]q)(1+q[k]q)={x+(α(1q)x)[k]q}(1+q[k]q)=x+(α(12q)x)[k]q+q(α(1q)x)[k]q2, therefore, by Un1,qα(e0;x)=1 and Un1,qα(e1;x)=x, we have

Un,qα(e2;x)==xan[n]qUn1,qα(e0;x)+α(12q)xan[n1]q[n]qUn1,qα(e1;x)+q(α(1q)x)an[n1]q2[n]qUn1,qα(e2;x)=xan[n]q+α(12q)xan[n1]q[n]qx+qx+xqn1+α[n1]qan[n1]q[n]qUn1,qα(e2;x)=xan[n]q+α(12q)xan[n1]q[n]qx+q[n1]q[n]q(11an)Un1,qα(e2;x).

Solving this recurrence relation, we obtain

Un,qα(e2;x)=xan[n]q+xqan1[n]q(11an)+xq2an2[n]q(11an)(11an1)++xqn2a2[n]q(11an)(11an1)(11a3)+x(α(12q)x)an[n1]q[n]q+xq(α(12q)x)an1[n2]q[n]q(11an)+xq2(α(12q)x)an2[n3]q[n]q(11an)(11an1)++xqn2(α(12q)x)a2[1]q[n]q(11an)(11an1)+(11a3)+qn1[1]q[n]q(11an)(11an1)+(11a2)U1,qα(e2;x).

Taking into account that (α(12q)x)[k]q=α[k]q(1qk)x+xq[k]q=ak+11+xq[k]q for k=1,2,,n1 and U1,qα(e2;x)=x, we find that

Un,qα(e2;x)=x[n]q{1an+qan1(11an)+q2an2(11an)(11an1)++qn2a2(11an)(11an1)(11a3)+qn1(11an)(11an1)(11a2)}+x[n]q{(11an)+q(11an)(11an1)+q2(11an)(11an1)(11an2)++qn2(11an)(11an1)(11a2)}+x2[n]q{q[n1]qan+q2[n2]qan1(11an)+q3[n3]qan2(11an)(11an1)++qn1[1]qa2(11an)(11an1)(11a3)}

The coefficient of x[n]q in (2.2) is the following:

1(11an)+q(1(11an1))(11an) +q2(1(11an2))(11an)(11an1) +qn2(1(11a2))(11an)(11an1)(11a3) +qn1(11an)(11an1)(11a2)+(11an) +q(11an)(11an1)+q2(11an)(11an1)(11an2)+ +qn2(11an)(11an1)(11a2)==1+q(11an)+q2(11an)(11an1)++qn1(11an)(11an1)(11a2).

The coefficient of x2[n]q in (2.2) is the following:

q[n1]q(1(11an))+q2[n2]q(1(11an1))(11an)+q3[n3]q(1(11an2))(11an)(11an1)++qn1[1]q(1(11a2))(11an)(11an1)(11a3)==q[n1]q(q[n1]qq2[n2]q)(11an)(q2[n2]qq3[n3]q)(11an)(11an1)(qn2[2]qqn1[1]q)(11an)(11an1)(11a3)qn1[1]q(11an)(11an1)(11a2)=[n]q1q(11an)q2(11an)(11an1)qn1(11an)(11an1)(11a2).

Combining (2.2), (2.3) and (2.4), we obtain

Un,qα(e2;x)==x2+x(1x)[n]q{1+q(11an)+q2(11an)(11an1)++qn1(11an)(11an1)(11a2)}=x2+x(1x)[n]q{1qx(1qn1)α[n1]q1x+xqn1+α[n1]q+q2x(1qn1)α[n1]q1x+xqn1+α[n1]qx(1qn2)α[n2]q1x+xqn2+α[n2]q+(1)n1qn1×x(1qn1)α[n1]q1x+xqn1+α[n1]qx(1qn2)α[n2]q1x+xqn2+α[n2]qx(1q)α[1]q1x+xq+α[1]q},

which was to be proved.

Remark 2.2

Because Un,q0(e2;x)=Rn,q(e2;x) and Rn,q(e2;x)=x2+x(1x)[n]q1x+xqn1x+xq (see [ 5 , p. 87, (5) ] ), we obtain, by Lemma 2.2, the following identity:

\lefteqn1qx(1qn1)1x+xqn1+q2x(1qn1)1x+xqn1x(1qn2)1x+xqn2+(1)n1qn1x(1qn1)1x+xqn1x(1qn2)1x+xqn2x(1q)1x+xq=1x+xqn1x+xq.

Analogously, in view of Un,1α(e2;x)=Snα(e2;x) and Snα(e2;x)=x2+x(1x)n1+nα1+α (see [ 11 , p. 1184, Lemma 4.1 ] ), we obtain, by Lemma 2.2, the following identity:

\lefteqn1+α(n1)1+α(n1)+α(n1)1+α(n1)α(n2)1+α(n2)++α(n1)1+α(n1)α(n2)1+α(n2)α1+α=1+nα1+α.

Lemma 2.3

Let Un,qα(f;x) be defined by (1.3)-(1.4). Then for any n1, α0 and q>0, we have

\lefteqnUn,qα(f;x)Un+1,qα(f;x)==k=0n1bn1,kα(q;x)(x+αqk[k]q)(1x+α[nk1]q)(1x+xqn+α[n]q)(1x+xqn1+α[n1]q)×{qn[n]q[nk]qf([k]q[n]q)+qk[n]q[k+1]qf([k+1]q[n]q)qk[n+1]q[nk]q[n]q[k+1]qf([k+1]q[n+1]q)}.

Proof â–¼
Because of 1x+xqn+α[n]q=qn(x+αqk[k]q)+(1x+α[nk]q) we have, by (1.3) and (1.4), that
(1x+xqn+α[n]q)Un,qα(f;x)==k=0n[nk]qqk(k1)/2qni=0k(x+αqi[i]q)j=0nk1(1x+α[j]q)i=0n1(1x+xqi+α[i]q)f([k]q[n]q)+k=0n[nk]qqk(k1)/2i=0k1(x+αqi[i]q)j=0nk(1x+α[j]q)i=0n1(1x+xqi+α[i]q)f([k]q[n]q)=qnk=0n1[nk]qqk(k1)/2i=0k(x+αqi[i]q)j=0nk1(1x+α[j]q)i=0n1(1x+xqi+α[i]q)f([k]q[n]q)+q(n+1)n/2i=0n(x+αqi[i]q)i=0n1(1x+xqi+α[i]q)f(1)+j=0n(1x+α[j]q)i=0n1(1x+xqi+α[i]q)f(0)+k=1n[nk]qqk(k1)/2i=0k1(x+αqi[i]q)j=0nk(1x+α[j]q)i=0n1(1x+xqi+α[i]q)f([k]q[n]q)=j=0n(1x+α[j]q)i=0n1(1x+xqi+α[i]q)f(0)+k=1nqn[nk1]qq(k1)(k2)/2×i=0k1(x+αqi[i]q)j=0nk(1x+α[j]q)i=0n1(1x+xqi+α[i]q)f([k1]q[n]q)+
+k=1n[nk]qqk(k1)/2i=0k1(x+αqi[i]q)j=0nk(1x+α[j]q)i=0n1(1x+xqi+α[i]q)f([k]q[n]q)+q(n+1)n/2i=0n(x+αqi[i]q)i=0n1(1x+xqi+α[i]q)f(1).

On the other hand, by (1.3) and (1.4),

Un+1,qα(f;x)=j=0n(1x+α[j]q)i=0n(1x+xqi+α[i]q)f(0)+k=1n[n+1k]qqk(k1)/2×i=0k1(x+αqi[i]q)j=0nk(1x+α[j]q)i=0n(1x+xqi+α[i]q)f([k]q[n+1]q)
+q(n+1)n/2i=0n(x+αqi[i]q)i=0n(1x+xqi+α[i]q)f(1).

Taking into account that

[n+1k]q=[nk]q[n+1]q[n+1k]q,[nk1]q=[nk]q[k]q[n+1k]q, and [nk+1]q=[n1k]q[n]q[k+1]q,

from (2.0) and (2.1) we obtain

\lefteqnUn,qα(f;x)Un+1,qα(f;x)==k=1n[nk]qqk(k1)/2i=0k1(x+αqi[i]q)j=0nk(1x+α[j]q)i=0n(1x+xqi+α[i]q)×{qnk+1[k]q[n+1k]qf([k1]q[n]q)+f([k]q[n]q)[n+1]q[n+1k]qf([k]q[n+1]q)}=k=0n1[n1k]q[n]q[k+1]qq(k+1)k/2i=0k(x+αqi[i]q)j=0nk1(1x+α[j]q)i=0n(1x+xqi+α[i]q)×{qnk[k+1]q[nk]qf([k]q[n]q)+f([k+1]q[n]q)[n+1]q[nk]qf([k+1]q[n+1]q)}=k=0n1bn1,kα(q;x)(x+αqk[k]q)(1x+α[nk1]q)(1x+xqn+α[n]q)(1x+xqn1+α[n1]q)×{qn[n]q[nk]qf([k]q[n]q)+qk[n]q[k+1]qf([k+1]q[n]q)qk[n+1]q[nk]q[n]q[k+1]qf([k+1]q[n+1]q)},

which was to be proved.

3 Main results

In the next theorem we study the uniform convergence of {Un,qα(f;x)}n1.

Theorem 3.1

Let Un,qnαn(f;x) be defined as in (1.3)-(1.4), and let {αn}n1 and {qn}n1 be two sequences such that αn0, 0<qn1, 1qn+αn for n1 and αn0 as n. Then, for all fC[0,1], we have limnUn,qnαn(f;x)=f(x) uniformly with respect to x[0,1].

Proof â–¼
We observe that the operators defined by (1.3) and (1.4) are positive for αn0 and 0<qn1. Therefore, in view of Popoviciu’s result given in [ 10 ] or taking into account Korovkin’s theorem [ 2 , p. 8, Theorem 3.1 ] and Lemma 2.2, we have to prove that limnUn,qnαn(e2;x)=x2 uniformly in x[0,1].

For ai=1x+xqni1+αn[i1]qn, i=2,3,,n and x[0,1], using the hypotheses about αn and qn, we obtain

1ai=x(1qni1)αn[i1]qn1qni1αn[i1]qn=(1qnαn)[i1]qn0

for x[0,1] and i=2,3,,n, and

ai+1ai=x(qniqni1)+αn([i]qn[i1]qn)=xqni1(qn1)+αnqni1qni1(qn1)+αnqni1=qni1(qn+αn1)0

for x[0,1] and i=2,3,,n1. In view of (3.-5) and (3.-4), we get

011ai11ai+1

for i=2,3,,n1 and x[0,1]. Hence, by Lemma 2.2,

\lefteqn0Un,qnαn(e2;x)x2=x(1x)[n]qn{1+qn(11an)+qn2(11an)(11an1)++qnn1(11an)(11an1)(11a2)}x(1x)[n]qn{1+qn(11an)+qn2(11an)2++qnn1(11an)n1}x(1x)[n]qn11qn(11an)=x(1x)[n]qnanqn+(1qn)an.

But an=1x(1qnn1)+αn[n1]qn1+αn[n1]qn and the function ttqn+(1qn)t is increasing on (0,), thus, by (3.-3), we obtain

\lefteqn0Un,qnαn(e2;x)x214[n]qn1+αn[n1]qn1+αn(1qn)[n1]qn14{1[n]qn+αn[n1]qn[n]qn}14{1[n]qn+αn}.

Because 01qnαn and αn0 as n, we get qn1 as n. Hence [n]qn as n. Indeed, for any fixed positive integer k, we have [n]qn[k]qn=1+qn++qnk1 when nk. But qn1 as n, therefore lim infn[n]qnlim infn[k]qn=k. Since k has been chosen arbitrarily, it follows that [n]qn as n. In conclusion (3.-2) implies that limnUn,qnαn(e2;x)=x2 uniformly in x[0,1], which completes the proof.

Corollary 3.1

Let Un,qnαn(f;x), {αn}n1 and {qn}n1 be defined as in Theorem 3.1. Then there exists C>0 such that

|Un,qnαn(f;x)f(x)|Cω2(f;12[n]qn1+αn)

for all fC[0,1], x[0,1] and n1.

Proof â–¼
If δ>0 and W2={gC[0,1]:gC[0,1]}, then the K-functional is defined as K2(f;δ)=inf{fg+δg2}, where denotes the sup-norm on C[0,1]. By [ 2 , p. 177, Theorem 2.4 ] , there exists an absolute constant C>0 such that

K2(f;δ)Cω2(f;δ),δ>0,
3.-1

where the second order modulus of smoothness is defined by (1.6).

Because of (1.3) and Lemma 2.2, we have |Un,qnαn(f;x)|Un,qnαn(e0;x)f=f, therefore

Un,qnαnff
3.0

for all fC[0,1]. Further, for any gW2, by Taylor’s formula

g(t)=g(x)+g(x)(tx)+xtg(u)(tu)du,t[0,1],

and Lemma 2.2, we find that

\lefteqn|Un,qnαn(g;x)g(x)|==|Un,qnαn(xt(tu)g(u)du;x)|Un,qnαn(|xt|tu||g(u)|du|;x)gUn,qnαn((tx)2;x)=g{Un,qnαn(e2;x)x2}.

Now, combining (3.1) and (3.-2), we get

Un,qnαngg14([n]qn1+αn)g.

Hence, in view of (3.0),

Un,qnαnffUn,qnαn(fg)(fg)+Un,qnαngg2fg+14([n]qn1+αn)g2{fg+14([n]qn1+αn)g}.

Taking the infimum on the right-hand side over all gW2, and using (3.-1), we get the desired estimates.

Remark 3.1

Let α0 and q(0,1) be given such that 1q+α. Taking into account the equality

Un,qα(e2;x)x2=x(1x)[n]q{1+q(11an)+q2(11an)(11an1)++qn1(11an)(11an1)(11a2)}

(see (3.-3) and Lemma 2.2) and the inequality (3.-5), we may write that
Un,qα(e2;x)x2+1q1qnx(1x). Hence

limnUn,qα(e2;x)x2+(1q)x(1x)>x2

for x(0,1) (if the limit there exists). This means that the operators (1.3) do not satisfy the conditions of Korovkin’s theorem. â–¡

In the next theorem we propose the investigation of convergence of the operators (1.3)–(1.4), when the parameters α and q are fixed.

Theorem 3.2

Let Un,qα(f;x) be defined by (1.3)-(1.4). If α0 and q(0,1), then there exist U,qα:C[0,1]C[0,1] positive linear operator and C>0 absolute constant such that

Un,qαfU,qαfCω2(f;qn/21qn+1)

for all fC[0,1] and n1.

Proof â–¼
We find for gW2, by Taylor’s formula, that
g([k]q[n]q)=g([k+1]q[n+1]q)+g([k+1]q[n+1]q)([k]q[n]q[k+1]q[n+1]q)+[k+1]q/[n+1]q[k]q/[n]q([k]q[n]qu)g(u)du

and

g([k+1]q[n]q)=g([k+1]q[n+1]q)+g([k+1]q[n+1]q)([k+1]q[n]q[k+1]q[n+1]q)+[k+1]q/[n+1]q[k+1]q/[n]q([k+1]q[n]qu)g(u)du.

Because

qn[n]q[nk]q+qk[n]q[k+1]q=qk[n+1]q[nk]q[n]q[k+1]q

and

qn[n]q[nk]q([k]q[n]q[k+1]q[n+1]q)+qk[n]q[k+1]q([k+1]q[n]q[k+1]q[n+1]q)=0,

by combining Lemma 2.3, (3.2) and (3.3), we obtain

\lefteqn|Un,qα(g;x)Un+1,qα(g;x)|k=0n1bn1,kα(q;x)(x+αqk[k]q)(1x+α[nk1]q)(1x+xqn+α[n]q)(1x+xqn1+α[n1]q)×{qn[n]q[nk]q|[k+1]q/[n+1]q[k]q/[n]q([k]q[n]qu)g(u)du|+qk[n]q[k+1]q|[k+1]q/[n+1]q[k+1]q/[n]q([k+1]q[n]qu)g(u)du|}k=0n1bn1,kα(q;x)(x+αqk[k]q)(1x+α[nk1]q)(1x+xqn+α[n]q)(1x+xqn1+α[n1]q)g×{qn[n]q[nk]q([k]q[n]q[k+1]q[n+1]q)2+qk[n]q[k+1]q([k+1]q[n]q[k+1]q[n+1]q)}=k=0n1bn1,kα(q;x)(x+αqk[k]q)(1x+α[nk1]q)(1x+xqn+α[n]q)(1x+xqn1+α[n1]q)g×{qn[n]q[nk]qq2k[nk]q2[n]q2[n+1]q2+qk[n]q[k+1]qq2n[k+1]q2[n]q2[n+1]q2)=k=0n1[n1k]qqk(k1)/2i=0k(x+αqi[i]q)j=0nk1(1x+α[j]q)i=0n(1x+xqi+α[i]q)×qk[n]q[n+1]q[k+1]q[nk]qg{qk[nk]q[n]q+qn[k+1]q[n]q}qn[n+1]q2[k+1]q[n+1]q[nk]q[n]q2qn[n+1]q2gk=0n1bn+1,k+1α(q;x)=2qn[n+1]q2gk=1nbn+1,kα(q;x)2qn[n+1]q2gk=0n+1bn+1,kα(q;x)=2qn[n+1]q2gUn+1,qα(e0;x)=2qn[n+1]q2g.

Hence we find for every gW2 and n,p1 that

\lefteqnUn,qαgUn+p,qαgUn,qαgUn+1,qαg+Un+1,qαgUn+2,qαg++Un+p1,qαgUn+p,qαg2(qn[n+1]q2+qn+1[n+2]q2++qn+p1[n+p]q2)g2qn[n+1]q2(1+q++qp1)g2qn(1qn+1)2g.

This means that the sequence {Un,qαg}n1 is a Cauchy-sequence in C[0,1], and therefore converges in C[0,1] for all gW2. On the other hand, analogously to (3.0), we obtain that

Un,qαff
3.5

for fC[0,1], which implies that Un,qα=sup{Un,qαf:f1}1 for each n1. However W2 is dense in C[0,1]. Then, by the well-known Banach-Steinhaus theorem (see [ 2 , p. 29 ] ), we obtain the convergence of {Un,qαf}n1 in C[0,1] for every fC[0,1]. In conclusion there exists an operator U,qα:C[0,1]C[0,1] such that Un,qαfU,qαf0 as n, for all fC[0,1]. This also implies that U,qα is a positive linear operator on C[0,1], because Un,qα are positive linear operators on C[0,1] for n1.

Further, let p in (3.4). Then

Un,qαgU,qαg2qn(1qn+1)2g.
3.6

Letting n in (3.5), we get

U,qαff
3.7

for all fC[0,1]. Combining (3.5), (3.6) and (3.7), we find that

Un,qαfU,qαfUn,qαfUn,qαg+Un,qαgU,qαg+U,qαgU,qαf2fg+2qn(1qn+1)2g.

Taking the infimum on the right-hand side over all gW2, and using (3.-1), we get

Un,qαfU,qαfCω2(f;qn/21qn+1),

which was to be proved.

Remark 3.2

Ostrovska proved in [ 8 ] for q1 and fC[0,1] that Rn,qf converges uniformly to R,qf on [0,1] as n, and the rate of convergence Rn,qfR,qf has been studied by Wang and Zhang in [ 12 ] . Theorem 3.2 implies for α=0 and q(0,1) the following estimation: there exists a constant C>0 such that

Rn,qfR,qfCω2(f;qn/21qn+1),
where fC[0,1] and n1 are arbitrary. â–¡

Remark 3.3

If α0 and q(0,1) are given such that 1q+α, then, in view of Remark 2.2, we have U,qα(e2;x)>x2 for all x(0,1), where the existence of the positive linear limit operator U,qα:C[0,1]C[0,1] is guaranteed by Theorem 3.2. On the other hand, because of Lemma 2.2, the operator U,qα reproduces the linear functions. Now, applying [ 13 , p. 1100, Theorem 9 ] , we find that U,qαf=f if and only if f is linear. â–¡

Bibliography

1

A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.

2

R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.

3

Z. Finta, Quantitative estimates for the Lupaş q-analogue of the Bernstein operator, Demonstratio Math., 44 (2011), pp. 123-130.

4

V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.

5

A. Lupaş, A q-analogue of the Bernstein operator, Babeş-Bolyai University, Seminar on Numerical and Statistical Calculus, 9 (1987), 85-92.

6

G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350 (2009), pp. 50-55. \includegraphics[scale=0.1]{ext-link.png}

7

S. Ostrovska, The q-versions of the Bernstein operator: from mere analogies to further developments, Results Math., 69(3) (2016), pp. 275-295. \includegraphics[scale=0.1]{ext-link.png}

8

S. Ostrovska, On the Lupaş q-analogue of the Bernstein operator, Rocky Mt. J. Math., 36 (2006) pp. 1615-1629. \includegraphics[scale=0.1]{ext-link.png}

9

G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), pp. 511-518.

10

T. Popoviciu, Asupra demonstraţiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare, Academia Republicii Populare Române, Lucrările Sesiunii Generale Ştiinţifice din 2–12 iunie 1950 (in Romanian) [English title: On the proof of the Weierstrass theorem with the aid of the interpolation polynomials]. Available soon at http://ictp.acad.ro/popoviciu \includegraphics[scale=0.1]{ext-link.png}

11

D.D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13 (1968), pp. 1173-1194.

12

H. Wang, Y. Zhang, The rate of convergence of the Lupaş q-analogue of the Bernstein operator, Abstr. Appl. Anal., 2014 (2014), Article ID 521709, 6 pages.

13

H. Wang, Properties of convergence for ω,q-Bernstein polynomials, J. Math. Anal. Appl., 340(2) (2008), pp. 1096-1108. \includegraphics[scale=0.1]{ext-link.png}