A Stancu type extension of Cheney and Sharma operators
DOI:
https://doi.org/10.33993/jnaat472-1133Abstract
In this paper we deal with a Stancu type extension of the Cheney and Sharma operators.
We consider a recurrence relation to get moments of the operators and give a local approximation result via suitable K-functional. Moreover, we show that each operator preserves the Lipschitz constant and order of a given Lipschitz continuous function.
Downloads
References
F. Altomare, M. Campiti, Korovkin-Type Approximaton Theory and Its Applications, Walter de Gruyter, Berlin New York, 1994. DOI: https://doi.org/10.1515/9783110884586
G. Bascanbaz-Tunca, A. Erencin, F. Tasdelen, Some properties of Bernstein type Cheney and Sharma Operators, General Mathematics, 24 (2016) nos. 1–2, pp. 17–25.
B.M. Brown, D. Elliott, D.F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49 (1987) no. 2, pp. 196–199, https://doi.org/10.1016/0021-9045(87)90087-6 DOI: https://doi.org/10.1016/0021-9045(87)90087-6
J. Bustamante, J.M. Quesada, A property of Ditzian-Totik second order moduli, Appl. Math. Lett. 23 (2010), no. 5, pp. 576–580, https://doi.org/10.1016/j.aml.2010.01.014 DOI: https://doi.org/10.1016/j.aml.2010.01.014
E.W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 2 (5) (1964), pp. 77–84.
M. Craciun, Approximation operators constructed by means of Sheffer sequences, Rev. Anal. Numer. Theor. Approx., 30 (2001) no. 2, pp. 135–150, https://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no2-art3
R. DeVore, G.G. Lorentz, Constructive Approximation , Springer, Berlin, 1993, https://doi.org/10.1007/978-3-662-02888-9 DOI: https://doi.org/10.1007/978-3-662-02888-9
D.D. Stancu, Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), pp. 241–251, Birkhauser Verlag, Basel, https://doi.org/10.1007/978-3-0348-6308-7_23 DOI: https://doi.org/10.1007/978-3-0348-6308-7_23
D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983) no. 2, pp. 211–229. https://doi.org/10.1007/bf02575593 DOI: https://doi.org/10.1007/BF02575593
D.D. Stancu, C. Cismasiu, On an approximating linear positive operator of Cheney-Sharma , Rev. Anal. Numer. Theor. Approx., 26 (1997), nos. 1–2, pp. 221–227, https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art30
D.D. Stancu, Use of an identity of A. Hurwitz for construction of a linear positive operator of approximation, Rev. Anal. Numer. Theor. Approx., 31 (2002) no. 1, pp. 115–118, https://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art13
D.D. Stancu, E.I. Stoica, On the use of Abel-Jensen type combinatorial formulas for construction and investigation of some algebraic polynomial operators of approximation, Stud. Univ. Babes-Bolyai Math., 54 (2009), no. 4, pp. 167–182.
D.D. Stancu, M.R. Occorsio, On Approximation by binomial operators of Tiberiu Popoviciu type , Rev. Anal. Numer. Theor. Approx., 27 (1998), pp. 167–181, https://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art17
T. Catinas , D. Otrocol, Iterates of multivariate Cheney-Sharma operators. J. Comput. Anal. Appl., 15 (2013), no. 7, pp. 1240–1246.
R. Yang, J. Xiong, F. Cao, Multivariate Stancu operators defined on a simplex, Appl. Math. Comput., 138 (2003), pp. 189–198, https://doi.org/10.1016/s0096-3003(02)00088-7 DOI: https://doi.org/10.1016/S0096-3003(02)00088-7
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.