A Stancu type extension of Cheney and Sharma operators

Authors

  • Tuğba Bostancı Ankara University, Turkey
  • Gülen Başcanbaz-Tunca Ankara University, Turkey

DOI:

https://doi.org/10.33993/jnaat472-1133
Abstract views: 390

Abstract

In this paper we deal with a Stancu type extension of the Cheney and Sharma operators.

We consider a recurrence relation to get moments of the operators and give a local approximation result via suitable K-functional. Moreover, we show that each operator preserves the Lipschitz constant and order of a given Lipschitz continuous function.

Downloads

Download data is not yet available.

References

F. Altomare, M. Campiti, Korovkin-Type Approximaton Theory and Its Applications, Walter de Gruyter, Berlin New York, 1994. DOI: https://doi.org/10.1515/9783110884586

G. Bascanbaz-Tunca, A. Erencin, F. Tasdelen, Some properties of Bernstein type Cheney and Sharma Operators, General Mathematics, 24 (2016) nos. 1–2, pp. 17–25.

B.M. Brown, D. Elliott, D.F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49 (1987) no. 2, pp. 196–199, https://doi.org/10.1016/0021-9045(87)90087-6 DOI: https://doi.org/10.1016/0021-9045(87)90087-6

J. Bustamante, J.M. Quesada, A property of Ditzian-Totik second order moduli, Appl. Math. Lett. 23 (2010), no. 5, pp. 576–580, https://doi.org/10.1016/j.aml.2010.01.014 DOI: https://doi.org/10.1016/j.aml.2010.01.014

E.W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 2 (5) (1964), pp. 77–84.

M. Craciun, Approximation operators constructed by means of Sheffer sequences, Rev. Anal. Numer. Theor. Approx., 30 (2001) no. 2, pp. 135–150, https://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no2-art3

R. DeVore, G.G. Lorentz, Constructive Approximation , Springer, Berlin, 1993, https://doi.org/10.1007/978-3-662-02888-9 DOI: https://doi.org/10.1007/978-3-662-02888-9

D.D. Stancu, Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), pp. 241–251, Birkhauser Verlag, Basel, https://doi.org/10.1007/978-3-0348-6308-7_23 DOI: https://doi.org/10.1007/978-3-0348-6308-7_23

D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983) no. 2, pp. 211–229. https://doi.org/10.1007/bf02575593 DOI: https://doi.org/10.1007/BF02575593

D.D. Stancu, C. Cismasiu, On an approximating linear positive operator of Cheney-Sharma , Rev. Anal. Numer. Theor. Approx., 26 (1997), nos. 1–2, pp. 221–227, https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art30

D.D. Stancu, Use of an identity of A. Hurwitz for construction of a linear positive operator of approximation, Rev. Anal. Numer. Theor. Approx., 31 (2002) no. 1, pp. 115–118, https://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art13

D.D. Stancu, E.I. Stoica, On the use of Abel-Jensen type combinatorial formulas for construction and investigation of some algebraic polynomial operators of approximation, Stud. Univ. Babes-Bolyai Math., 54 (2009), no. 4, pp. 167–182.

D.D. Stancu, M.R. Occorsio, On Approximation by binomial operators of Tiberiu Popoviciu type , Rev. Anal. Numer. Theor. Approx., 27 (1998), pp. 167–181, https://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art17

T. Catinas , D. Otrocol, Iterates of multivariate Cheney-Sharma operators. J. Comput. Anal. Appl., 15 (2013), no. 7, pp. 1240–1246.

R. Yang, J. Xiong, F. Cao, Multivariate Stancu operators defined on a simplex, Appl. Math. Comput., 138 (2003), pp. 189–198, https://doi.org/10.1016/s0096-3003(02)00088-7 DOI: https://doi.org/10.1016/S0096-3003(02)00088-7

Downloads

Published

January 2, 2025

How to Cite

Bostancı, T., & Başcanbaz-Tunca, G. (2018). A Stancu type extension of Cheney and Sharma operators. J. Numer. Anal. Approx. Theory, 47(2), 124–134. https://doi.org/10.33993/jnaat472-1133

Issue

Section

Articles