Remarks on a Bernstein-type operator of Aldaz, Kounchev and Render
DOI:
https://doi.org/10.33993/jnaat501-1237Keywords:
Bernstein-type operator, king operator, second order modulus of continuity, Marsden-Schoenberg, modulus of order jAbstract
The Bernstein-type operator of Aldaz, Kounchev and Render (2009) is discussed. New direct results in terms of the classical second order modulus as well as in a modification following Marsden and Schoenberg are given.
Downloads
References
A.M. Acu, I. Rasa, New estimates for the differences of positive linear operators, Numer. Algor., 73 (2016) no. 3, pp. 775–789, https://doi.org/10.1007/s11075-016-0117-8.
O. Agratini, I.A. Rus, Iterates of a class of discrete linear operator via contraction principle, Comment. Math. Univ. Carol., 44 (2003) 3, 555–563.
J.M. Aldaz, O. Kounchev, H. Render, Shape preserving properties of generalized Bernstein operators on extended Chebyshev spaces, Numer. Math., 114 (2009) no. 1, pp. 1–25, https://doi.org/10.1007/s00211-009-0248-0.
J.M. Aldaz, H. Render, Generalized Bernstein operators on the classical polynomial spaces, Mediterr. J. Math., 15 (2018) art. id. 222, https://doi.org/10.1007/s00009-018-1266-x.
M. Birou, A proof of a conjecture about the asymptotic formula of a Bernstein type operator, Results Math., 72 (2017), pp. 1129–1138, https://doi.org/10.1007/s00025-016-0608-x.
D. Cardenas-Morales, P. Garrancho, F.J. Munoz-Delgado, Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math. Comput., 182 (2006), 1615–1622, https://doi.org/10.1016/j.amc.2006.05.046.
D. Cardenas-Morales, P. Garrancho, I. Rasa, Bernstein-type operators which preserve polynomials, Comput. Math. Appl.,62(2011), 158-163, https://doi.org/10.1016/j.camwa.2011.04.063.
D. Cardenas-Morales, P. Garrancho, I. Rasa, Asymptotic formulae via a Korovkin-type result, Abstract Appl. Anal.,2012(2021), art. ID 217464, 12 pp., https://doi.org/10.1155/2012/217464.
C. Cottin, I. Gavrea, H. Gonska, D. Kacso, Ding-Xuan Zhou, Global smoothness preservation and the variation-diminishing property, J. Inequal. Appl.,4(1999) no. 2, 91–114, https://doi.org/10.1155/s1025583499000314.
Z. Finta, Bernstein type operators having 1 and xj as fixed points, Cent. Eur. J. Math., 11 (2013), 2257–2261.
Z. Finta, Note on a Korovkin-type theorem, J. Math. Anal. Appl., 415 (2014), 750–759, https://doi.org/10.1016/j.jmaa.2014.02.010.
Z. Finta, A quantitative variant of Voronovskaja’s theorem for King-type operators, Constructive Mathematical Analysis, 2 (2019) no. 3, 124–129, https://doi.org/10.33205/cma.553427.
I. Gavrea, M. Ivan, Asymptotic behaviour of the iterates of positive linear operators, Abstract Appl. Anal., 2011 (2011), art. ID 670509, 11 pp., https://doi.org/10.1155/2011/670509.
H. Gonska, On approximation by linear operators: improved estimates, Rev. Anal. Numer. Theor. Approx., 14 (1985), 7-32, https://ictp.acad.ro/jnaat/journal/article/view/1985-vol14-no1-art2.
H. Gonska, P. Pitul, Remarks on an article of J.P. King, Comment. Math. Univ. Carol., 46 (2005), 645–652.
J.P. King, Positive linear operators which preserve x2, Acta Math. Hungar., 99 (2003) no. 3, 203–208, https://doi.org/10.1023/a:1024571126455.
M. Marsden, I.J. Schoenberg, On variation diminishing spline approximation methods, Mathematica, 8 (31) (1966) no. 1, 61–82.
R. Paltanea, Optimal constant in approximation by Bernstein operators, J. Comput. Anal. Appl., 5 (2003), 195–235.
R. Paltanea, Approximation Theory using Positive Linear Operators, Birkhauser, Boston, 2004
Published
Issue
Section
License
Copyright (c) 2021 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.