On approximation by linear operators: improved estimates
Keywords:
quantitative approximation, direct estimates, (positive) linear operators, almost lattice homomorphisms, moduli of continuity of order 1 and 2, Bernstein operators and the associated semigroup, Meyer-König operator, Zeller operator, Hermite-Fejér operatorAbstract
The present paper describes a unified approach to quantitative approximation theorems for certain linear operators L including positive linear ones. It is shown for so-called almost lattice homomorphisms A that the difference \((L-A)(f,x)\) can be estimated in terms of a certain three parameter functional \(\Omega\). This functional is in turn bounded from above by various classical seminorms such as (modifications of) moduli of continuity of order 1 and 2. There is a large variety of opportunities to combine results of this paper in order to arrive at direct quantitative assertions. Several examples show that the general theory implies a number of results which improve those known so far.
Downloads
References
Alkemande, J. A. H., The second moment for the Meyer-König and Zeller operators, Report 83-01, Delft University of Technology, Delft, 1983.
Berens, Hubert; Lorentz, George G. Inverse theorems for Bernstein polynomials. Indiana Univ. Math. J. 21 (1971/72), 693-708, MR0296579.
Brudnyĭ, Yu. A., On a method of approximation of bounded functions defined in an interval (in Russian), in: Studies in Contemporany Problems. Constructive Theory of Functions, Proc. Second All-Union Conference, Baku, 1962, I.I. Ibragimov, ed., Izdat. Akad. Nauk Azerbaidžan, SSR, Baku, 1965, 40-45.
DeVore, Ronald A. The approximation of continuous functions by positive linear operators. Lecture Notes in Mathematics, Vol. 293. Springer-Verlag, Berlin-New York, 1972. viii+289 pp., MR0420083, https://doi.org/10.1007/bfb0059493
DeVore, Ronald A. Degree of approximation. Approximation theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976), pp. 117-161. Academic Press, New York, 1976,MR0440865.
Gonska, H., Quantitative Aussagen zur Approximation dureh positive lineare Operatoren, Disseration, Universität Duisburg, 1979.
Gonska, H. H. A note on pointwise approximation by Hermite-Fejér type interpolation polynomials. Functions, series, operators, Vol. I, II (Budapest, 1980), 525-537, Colloq. Math. Soc. János Bolyai, 35, North-Holland, Amsterdam, 1983, MR0751020.
Gonska, Heinz H. On approximation of continuously differentiable functions by positive linear operators. Bull. Austral. Math. Soc. 27 (1983), no. 1, 73-83, MR0696645, https://doi.org/10.1017/s0004972700011497
Gonska, Heinz H.; Meier, Jutta A bibliography on approximation of functions by Bernstein type operators (1955-1982). Approximation theory, IV (College Station, Tex., 1983), 739-785, Academic Press, New York, 1983,MR0754423.
Knoop, H. B., Hermite-Fejér-Interpolation mit Randbedingungen, Habilitationsschrift Universität Duisburg, 1981.
Marsden, Martin; Schoenberg, I. J. On variation diminishing spline approximation methods. Mathematica (Cluj) 8 (31) 1966 61-82, MR0213791.
Mills, T. M. Some techniques in approximation theory. Math. Sci. 5 (1980), no. 2, 105-120, MR0592721.
Mitjagin B.S. -Semenov, E.M., Lack of interpolation of linear operators in spaces of smooth functions, Math. USSR Izvestija 11, 1229-1266, (1977), https://doi.org/10.1070/im1977v011n06abeh001767
Peetre, Jaak Exact interpolation theorems for Lipschitz continuous functions. Ricerche Mat. 18 1969 239-259, MR0265932 .
Schurer, F.; Steutel, F. W. The degree of local approximation of functions in C1[0,1] by Bernstein polynomials. J. Approximation Theory 19 (1977), no. 1, 69-82, MR0437992, https://doi.org/10.1016/0021-9045(77)90030-2
Schurer, F.; Steutel, F. W., On the degree of approximation of functions in C1[0,1] by the operators of Meyer-König and Zeller. J. Math. Anal. Appl. 63 (1978), no. 3, 719-728, MR0493083, https://doi.org/10.1016/0022-247x(78)90067-7
Stark, Eberhard L., Bernstein-Polynome, 1912-1955. (German. English summary) [Bernstein polynomials, 1912--1955] Functional analysis and approximation (Oberwolfach, 1980), pp. 443-461, Internat. Ser. Numer. Math., 60, Birkhäuser, Basel-Boston, Mass., 1981, MR0650296, https://doi.org/10.1007/978-3-0348-9369-5_40
Stark, E. L., 1. Nachtrag zu' Bernstein-Polynome, 1912-1955, Written communication, March, 1982.
Strukov, L. I.; Timan, A. F. Sharpening and generalization of some theorems of approximation by polynomials of S. N. Bernšteĭn. (Russian) The theory of the approximation of functions (Proc. Internat. Conf., Kaluga, 1975) (Russian), pp. 338-341, "Nauka", Moscow, 1977, MR0525557.
Strukov, L. I. - Timan, A. F., Mathematical expectation of continuous functions of random variables. Smoothness and variance, Siberian Math. J. 18, 469-474, (1978), https://doi.org/10.1007/bf00967038
Wolff, Manfred Über das Spektrum von Verbandshomomorphismen in C(X). (German) Math. Ann. 182 1969 161-169, MR0247511, https://doi.org/10.1007/bf01350319
Žuk, V. V. - Natanson, G. I., On the question of approximation in an integral metric of functions defined on an interval, Vestnik Leningrad Univ. Math. 12, 169-182, (1980).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.