A comparative study of Filon-type rules for oscillatory integrals


  • Hassan Majidian Department of Multidisciplinary Studies, Faculty of Encyclopedia Studies, Institute for Humanities and Cultural Studies, Tehran, Iran



oscillatory integral, Filon-Clenshaw-Curtis rule, extended FCC rule, adaptive FCC rule
Abstract views: 56


Our aim is to answer the following question: "Among the Filon-type methods for computing oscillatory integrals, which one is the most efficient in practice?". We first discuss why we should seek the answer among the family of Filon-Clenshaw-Curtis rules. A theoretical analysis accompanied by a set of numerical experiments reveals that the plain Filon-Clenshaw-Curtis rules reach a given accuracy faster than the (adaptive) extended Filon-Clenshaw-Curtis rules. The comparison is based on the CPU run-time for certain wave numbers (medium and large).


Download data is not yet available.


F. Bornemann, Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals, Found. Comput. Math., 11 (2011), pp. 1–63, DOI:

F. Bornemann and G. Wechslberger, Optimal contours for high-order derivatives, IMA J. Numer. Anal., 33 (2013), pp. 403–412, DOI:

A. Deano, D. Huybrechs, and A. Iserles, Computing Highly Oscillatory Integrals, SIAM, 2017, DOI:

V. Dominguez, I. Graham, and T. Kim, Filon-Clenshaw-Curtis rules for highly oscillatory integrals with algebraic singularities and stationary points, SIAM J. Numer. Anal., 51 (2013), pp. 1542–1566, DOI:

V. Dominguez, I. Graham, and V. Smyshlyaev, Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory integrals, IMA J. Numer. Anal., 31 (2011), pp. 1253–1280, DOI:

A. Dutt, M. Gu, and V. Rokhlin, Fast algorithms for polynomial interpolation, integration, and differentiation, SIAM J. Numer. Anal., 33 (1996), pp. 1689–1711, DOI:

J. Gao and A. Iserles, A generalization of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals, BIT Numer. Math., 57 (2017), pp. 943–961, DOI:

L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), pp. 325–348, DOI:

A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, 2008, DOI:

A. Iserles and S. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT Numer. Math., 44 (2004), pp. 755–772, DOI:

A. Iserles and S. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. Lond. A, 461 (2005), pp. 1383–1399, DOI:

G. Lantoine, R. Russell, and T. Dargent, Using multicomplex variables for automatic computation of high-order derivatives, ACM Trans. Math. Softw., 38 (2012), pp. 1–21, DOI:

H. Majidian, Adaptive FCC+ rules for oscillatory integrals, J. Comput. Appl. Math., 424 (2023), p. 115012, DOI:

H. Majidian, Efficient construction of FCC+ rules, J. Comput. Appl. Math., 417 (2023), p. 114592, DOI:

H. Majidian, M. Firouzi, and A. Alipanah, On the stability of Filon-Clenshaw-Curtis rules, Bull. Iran. Math. Soc., 48 (2022), pp. 2943–2964, DOI:

J. Martins, P. Sturdza, and J. Alonso, The complex-step derivative approximation, ACM Trans. Math. Softw., 29 (2003), pp. 245–262, DOI:

H. Millwater and S. Shirinkam, Multicomplex Taylor series expansion for computing high order derivatives, Int. J. Appl. Math., 27 (2014), pp. 311–334, DOI:

R. Neidinger, Introduction to automatic differentiation and MATLAB object-oriented programming, SIAM Rev., 52 (2010), pp. 545–563, DOI:

M. Patterson, M. Weinstein, and A. Rao, An efficient overloaded method for computing derivatives of mathematical functions in MATLAB, ACM Trans. Math. Softw., 39 (2013), pp. 1–36, DOI:

S. Xiang, X. Chen, and H. Wang, Error bounds for approximation in Chebyshev points, Numer. Math., 116 (2010), pp. 463–491, DOI:

S. Xiang, G. He, and Y. Cho, On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals, Adv. Comput. Math., 41 (2015), pp. 573–597, DOI:




How to Cite

Majidian, H. (2024). A comparative study of Filon-type rules for oscillatory integrals. J. Numer. Anal. Approx. Theory.