Adaptation of the composite finite element framework for semilinear parabolic problems
DOI:
https://doi.org/10.33993/jnaat531-1392Keywords:
approximation errors, semilinear parabolic equation, Finite Element Method, convergenceAbstract
In this article, we discuss one type of finite element method (FEM), known as the composite finite element method (CFE). Dimensionality reduction is the primary benefit of CFE as it helps to reduce the complexity of the domain space. The number of degrees of freedom is greater in standard FEM compared to CFE. We consider the semilinear parabolic problem in a 2D convex polygonal domain. The analysis of the semidiscrete method for the problem is carried out initially in the CFE framework. Here, the discretization is carried out only in space. Then, the fully discrete problem is taken into account, where both the spatial and time components get discretized.
In the fully discrete case, the backward Euler method and the Crank-Nicolson method in the CFE framework are adapted for the semilinear problem. The properties of convergence are derived and the error estimates are examined. It is verified that the order of convergence is preserved. The results obtained from the numerical computations are also provided.
Downloads
References
R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
R.A. Adams and J.J. Fournier, Sobolev Spaces, Academic Press, 2003.
H. Amann, Existence and stability of solutions for semi-linear parabolic systems, and applications to some diffusion reaction equations, Proc. Roy. Soc. Edinburgh Sect. A, 81 (1978), pp. 35-47. https://doi.org/10.1017/S0308210500010428 DOI: https://doi.org/10.1017/S0308210500010428
A.K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation, Math. Comp., 52 (1989), pp. 255-274. https://doi.org/10.1090/S0025-5718-1989-0983310-2 DOI: https://doi.org/10.1090/S0025-5718-1989-0983310-2
J. Becker, A second order backward difference method with variable steps for a parabolic problem, BIT, 38 (2002), pp. 644-664. https://doi.org/10.1007/BF02510406 DOI: https://doi.org/10.1007/BF02510406
J.H. Bramble, Discrete methods for parabolic equations with time-dependent coefficients, Numer. Methods for PDE’s, Academic Press, 1979, pp. 41-52. https://doi.org/10.1016/B978-0-12-546050-7.50007-1 DOI: https://doi.org/10.1016/B978-0-12-546050-7.50007-1
J.H. Bramble and P. Sammon, Efficient higher order single step methods for parabolic problems: Part I, Math. Comp., 35 (1980), pp. 655-677. https://doi.org/10.1090/S0025-5718-1980-0572848-X DOI: https://doi.org/10.1090/S0025-5718-1980-0572848-X
P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Class. Appl. Math., Society for Industrial and Applied Mathematics, Philadelphia, 2002. https://doi.org/10.1137/1.9780898719208 DOI: https://doi.org/10.1137/1.9780898719208
J. Douglas, Jr. and T.F. Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 7 (1970), pp. 575-626. https://doi.org/10.1137/0707048 DOI: https://doi.org/10.1137/0707048
K. Eriksson, C. Johnson and V. Thomee´ , Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Mod´el. Math. Anal. Num´er., 19 (1985), pp. 611-643. https://doi.org/10.1051/m2an/1985190406111 DOI: https://doi.org/10.1051/m2an/1985190406111
D.J. Estep, M.G. Larson and R.D. Williams, Estimating the error of numerical solutions of reaction-diffusion equations, American Mathematical Soc., Vol. 146, No. 696, 2000. https://doi.org/10.1090/memo/0696 DOI: https://doi.org/10.1090/memo/0696
W. Hackbusch and S.A. Sauter, Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales, Mater. Model., 8:9 (1996), pp. 31-43.
W. Hackbusch and S.A. Sauter, Composite finite elements for problems containing small geometric details. Part II: Implementation and numerical results, Comput. Vis. Sci., 1:1 (1997), pp. 15-25. https://doi.org/10.1007/s007910050002 DOI: https://doi.org/10.1007/s007910050002
W. Hackbusch and S.A. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated micro-structures, Numer. Math., 75:4 (1997), pp. 447-472. https://doi.org/10.1007/s002110050248 DOI: https://doi.org/10.1007/s002110050248
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer, 2006.
H.-P. Helfrich, Error estimates for semidiscrete Galerkin type approximations to semilinear evolution equations with nonsmooth initial data, Numer. Math., 51:5 (1987), pp. 559-569. https://doi.org/10.1007/BF01400356 DOI: https://doi.org/10.1007/BF01400356
P. Henry-Labordere, N. Oudjane, X. Tan, N. Touzi and X. Warin, Branching diffusion representation of semilinear PDEs and Monte Carlo approximation, Annales de l’Institut Henri Poincar´e, Probabilit´es et Statistiques, 55:1 (2019), pp. 184-210. https://doi.org/10.1214/17-AIHP880 DOI: https://doi.org/10.1214/17-AIHP880
M. Hutzenthaler, A. Jentzen, T. Kruse, T.A. Nguyen and P.V. Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Proc. R. Soc. A, Math. Phys. Eng. Sci., 476:2244 (2020), pp. 20190630. https://doi.org/10.1098/rspa.2019.0630 DOI: https://doi.org/10.1098/rspa.2019.0630
M. Hutzenthaler, A. Jentzen and T. Kruse, Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, Partial Differential Eq. Appl., 2:6 (2021), pp. 1-31. https://doi.org/10.1007/s42985-021-00089-5 DOI: https://doi.org/10.1007/s42985-021-00089-5
S. Larsson, Semilinear parabolic partial differential equations: thoery, approximation and applications, New Trends in the Mathematical and Computer Sciences, Vol. 3 (2006), pp. 153-194.
F. Liehr, T. Preusser, M. Rumpf, S. Sauter and L.O. Schwen, Composite finite elements for 3D image based computing, Comput. Visualization Sci. 12:4 (2009), pp. 171-188. https://doi.org/10.1007/s00791-008-0093-1 DOI: https://doi.org/10.1007/s00791-008-0093-1
T. Pramanick and R.K. Sinha, Two-scale composite finite element method for parabolic problems with smooth and nonsmooth initial data, J. Appl. Math. Comput., 58:1-2 (2018), pp. 469-501. https://doi.org/10.1007/s12190-017-1153-9 DOI: https://doi.org/10.1007/s12190-017-1153-9
T. Pramanick and R.K. Sinha, Error estimates for two-scale composite finite element approximations of parabolic equations with measure data in time for convex and nonconvex polygonal domains, Appl. Numer. Math., 143 (2019), pp. 112-132. https://doi.org/10.1016/j.apnum.2019.03.009 DOI: https://doi.org/10.1016/j.apnum.2019.03.009
T. Pramanick and R.K. Sinha, Composite finite element approximation for parabolic problems in nonconvex polygonal domains, Comp. Methods Appl. Math., 20:2 (2020), pp. 361-378. https://doi.org/10.1515/cmam-2018-0155 DOI: https://doi.org/10.1515/cmam-2018-0155
M. Rech, Composite finite elements: An adaptive two-scale approach to the nonconforming approximation of Dirichlet problems on complicated domains, PhD thesis, Universit¨at Z¨urich, 2006.
M. Rech, S.A. Sauter and A. Smolianski, Two-scale composite finite element method for Dirichlet problems on complicated domains, Numer. Math., 102:4 (2006), pp. 681-708. https://doi.org/10.1007/s00211-005-0654-x DOI: https://doi.org/10.1007/s00211-005-0654-x
S. Sarraf, E.J. Lopez, V.E. Sonzogni and M. B. Bergallo ´ , An Algebraic Composite Finite Element Mesh Method, Cuadernos de Matem´atica y Mec´anica, (2009).
S.A. Sauter and R. Warnke, Composite finite elements for elliptic boundary value problems with discontinuous coefficients, Computing, 77:1 (2006), pp. 29-55. https://doi.org/10.1007/s00607-005-0150-2 DOI: https://doi.org/10.1007/s00607-005-0150-2
V. Thomee´ , Galerkin Finite Element Methods for Parabolic Problems (Second Edition), Springer Ser. Comput. Math., Springer-Verlag, Berlin, 2006.
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, 1995.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anjaly Anand, Tamal Pramanick
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Funding data
-
Department of Science and Technology, Ministry of Science and Technology, India
Grant numbers SR/FST/MS-I/2019/40