The second order modulus revisited: remarks, applications, problems

Authors

  • Heiner Gonska University of Duisburg-Essen, Germany https://orcid.org/0000-0001-7448-2901
  • Ralitza K. Kovacheva Institute of Mathematics. Bulgarian Academy of Sciences, Bulgaria

DOI:

https://doi.org/10.33993/jnaat531-1410

Keywords:

second order modulus, degree of approximation, global smoothness preservation, Bernstein operators
Abstract views: 75

Abstract

Several questions concerning the second order modulus of smoothness are addressed in this note. The central part is a refined analysis of a construction of certain smooth functions by Zhuk and its application to several problems in approximation theory, such as degree of approximation and the preservation of global smoothness. Lower bounds for some optimal constants introduced by Sendov are given as well. We also investigate an alternative approach using quadratic splines studied by Sendov.

Downloads

Download data is not yet available.

References

A. Adell, I. de la Cal, Preservation of moduli of continuity for Bernstein-type operators, Manuscript 1993. DOI: https://doi.org/10.1007/978-1-4615-2494-6_1

https://doi.org/10.1007/978-1-4615-2494-6_1 DOI: https://doi.org/10.1007/978-1-4615-2494-6_1

G.A. Anastassiou, C. Cottin, H.H., Gonska, Global smoothness of approximating functions, Analysis 11 (1991), 43-57. DOI: https://doi.org/10.1524/anly.1991.11.1.43

https://doi.org/10.1524/anly.1991.11.1.43 DOI: https://doi.org/10.1524/anly.1991.11.1.43

I.B. Bashmakova, On approximation by Hermite splines (Russian), In: Numerical Methodsin Boundary Value Problems of Mathemati- cal Physics(Meshvyz. Temat. Sb. Tr.), 5-7. Leningrad: Leningradskii Inzhemerno-Stroitelnyi Institut 1985.

W.E. Bloom, D. Elliot, The modulus of continuity of the remainder in the approximation of Lipschitz functions, J. Approx. Theory 31 (1981), 59-66. DOI: https://doi.org/10.1016/0021-9045(81)90030-7

https://doi.org/10.1016/0021-9045(81)90030-7 DOI: https://doi.org/10.1016/0021-9045(81)90030-7

C. Badea, I. Badea, H. Gonska, Improved estimates on simultaneous approximation by Bernstein operators II, Manuscript 1993.

A. Boos, Jia-ding Cao, H. Gonska, Approximation by Boolean sums of positive linear operators V: on the constants in DeVore-Gopengauz-type inequalities. To appear in Calcolo. Temporary reference: Schriftenreihe des Instituts für Angewandte Informatik SIAI-EBS-4-93, European Business School 1993. DOI: https://doi.org/10.1007/BF02575858

https://doi.org/10.1007/BF02575858 DOI: https://doi.org/10.1007/BF02575858

Ju. A. Brundnyi, Approximation of functions of n variables by quasi-polynomials (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 34 (1970), 564-583. English translation: Math. USSR-Izvestija 4 (1970, n.3), 568-586 DOI: https://doi.org/10.1070/IM1970v004n03ABEH000922

https://doi.org/10.1070/IM1970v004n03ABEH000922 DOI: https://doi.org/10.1070/IM1970v004n03ABEH000922

H. Burkili, Cesàro-Perron alm ost periodic functions, Proc. London Math. Soc (Series 3) 2 (1952), 150-174. DOI: https://doi.org/10.1112/plms/s3-2.1.150

https://doi.org/10.1112/plms/s3-2.1.150 DOI: https://doi.org/10.1112/plms/s3-2.1.150

Jia-ding Cao, H. Gonska, Approximation by Boolean sums of positive linear operators, Rend. Mat. 6 (1986), 525-546.

C. Cottin, H. Gonska, Simultaneous approximation and global smoothness preservation, Rend. Circ. Mat. Palermo (2) Suppl. 33 (1993), 259-279.

R.A. Devore, The Approximation of Continuous Functions by Positive Linear Operators, Berlin: Springer 1972. DOI: https://doi.org/10.1007/BFb0059493

https://doi.org/10.1007/BFb0059493 DOI: https://doi.org/10.1007/BFb0059493

R.A. Devore, Degree of approximation, in Approximation Tehory II. (Proc. Int. Symp. Austin 1976; ed. by G.G. Lorentz et al.), 117-161. New York: Academic Press 1976.

G. Freud, Sui procedimenti lineari d'approssimazione, atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 26 (1959), 641-643.

N.G. Gasharov, On estimates for the approximation by linear operators preserving linear functions (Russian), In: Approximation of Functions by Special Classes of Operators. 28035, Vologda, 1987.

N.G. Gasharov, Written comunication, January 1992.

I. Gavrea, About a conjecture, Studia Univ. Babe¸s-Bolyai Math. 38 (1993).

I. Gavrea, I. Rasa, Remarks on some quantitative Korovkin-type results, Manuscript 1993.

H.H. Gonska, Query in Unsolved Problems,In: Constructive Function Theory 81.Proc.Int.Conf.Varna 1981; ed. by Bl. Sendov et. al.), 597-598, Sofia: Publishing House of the Bulgarian Acadmy of Sciences 1983.

H.H. Gonska, Two problems on best constants in direct estimates, In: Problem Section of Proc. Section Edmonton Conf. Approximation Theory (Edmonton, alta., 1982; ed. by Z. Ditzian et al., 194, Providence, RI: Amer. Math. Soc. 1983.

H.H. Gonska, Quantitative Korovkin-type theorems on simultaneous approximation, Math. Z. 186 (1984), 419-433. DOI: https://doi.org/10.1007/BF01174895

https://doi.org/10.1007/BF01174895 DOI: https://doi.org/10.1007/BF01174895

H.H. Gonska, Degree of approximation by lacunary interpolators:(0,…,R - 2, R) interpolation, Rocky Mountain J. Math. 19 (1989), 157-171. DOI: https://doi.org/10.1216/RMJ-1989-19-1-157

https://doi.org/10.1216/RMJ-1989-19-1-157 DOI: https://doi.org/10.1216/RMJ-1989-19-1-157

H.H. Gonska, J. Meier, On approximation by Bernstein type operators: best constants, Studia Sci. Math. Hungar. 22 (1987), 287-297.

H.H. Gonska, Ding-xuan Zhou, On an extremal problem concerning Bernstein operators, To appear in Serdica. Temporary reference: Schriftenreihe des Instituts für Angewandte Informatik SIAI-EBS-10-94, European Business School 1994.

H.H. Gonska, Xin-long Zhou, Polynomial approximation with side conditions: recent results and open problems, In:Proc. Firs First International Colloquium on Numerical Analysis (Plovdiv 1992; ed. By D.Bainov and V. Covachev), 61-71. Zeist/The Netherlands: VPS International Science Publishers 1993.

https://doi.org/10.1515/9783112314111-007 DOI: https://doi.org/10.1515/9783112314111-007

D.S. Mitrinovic, Analytic Inequalities, Berlin et al: Springer 1970. DOI: https://doi.org/10.1007/978-3-642-99970-3

https://doi.org/10.1007/978-3-642-99970-3 DOI: https://doi.org/10.1007/978-3-642-99970-3

R. Paltanea, On the estimate of the pointwise approximation of functions by linear positive functionals, Studia Univ. Babes-Bolyai 53 (1990), no.1, 11-24.

L.L. Schumaker, Spline Functions: Basic Theory, New York: John Wiley & Sons 1981.

Bl. Sendov, On a theorem of Ju. Brudnyi, Math. Balkanica (N.S.) 1 (1987), no.1, 106-111.

Bl. Sendov, V.A. Popov, Averaged Moduli of Smoothness (Bulgarian), Sofia: Publishing House of the Bulgarian Academy of Sciences 1983.

Bl. Sendov, V.A. Popov, The Averaged Moduli of Smoothness, New York: John Wiley & Sons 1988.

P.C. Sikkema, Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numer. Math. 3 (1961), 107-116. DOI: https://doi.org/10.1007/BF01386008

https://doi.org/10.1007/BF01386008 DOI: https://doi.org/10.1007/BF01386008

S.B. Steckin, The approximation of periodic funcitons by Fejer sums (Russian), Trudy Mat. Inst. Steklov 62 (1961), 48-60, English translation: Amer. Math. Soc. Transl. (2) 28 (1963), 269-282. DOI: https://doi.org/10.1090/trans2/028/14

https://doi.org/10.1090/trans2/028/14 DOI: https://doi.org/10.1090/trans2/028/14

H.Withney, On functions with bounded n-th di¤erences, J. Math. Pures et Appl. 36 (1957), 67-95.

Ding-xuan Zhou, On a problem of Gonska, To appear in Resultate Math.

V.V. Zhuk, Functions of the Lip 1 class and S.N. Bernstein's polynomials (Russian), Vestnik Leningrad. Univ. Math.Mekh. Astronom. 1989, vyp.1, 25-30.

Downloads

Published

2024-07-11

How to Cite

Gonska, H., & Kovacheva, R. K. (2024). The second order modulus revisited: remarks, applications, problems. J. Numer. Anal. Approx. Theory, 53(1), 80–104. https://doi.org/10.33993/jnaat531-1410

Issue

Section

Articles