A new preconditioned Richardson iterative method

Authors

  • Hassan Jamali Faculty of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, Iran
  • Reza Pourkani Faculty of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, Iran

DOI:

https://doi.org/10.33993/jnaat532-1430

Keywords:

iterative method, Richardson iteration, convergence rate, Chebyshev polynomials
Abstract views: 15

Abstract

In this paper, we propose a new iterative technique for solving an operator equation \(Ax=y\) based on the Richardson iterative method. Then, by using the Chebyshev polynomials, we modify the proposed method to accelerate the convergence rate. Also, we present the results of some numerical experiments that demonstrate the efficiency and effectiveness
of the proposed methods compared to the existing, state-of-the-art methods.

Downloads

Download data is not yet available.

References

S.F. Ashby, T.A. Manteuffel and J.S. Otto, A comparison of adaptive Chebyshev and least squares polynomial preconditioning for Hermitian positive definite linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1-29. https://doi.org/10.1137/0913001 DOI: https://doi.org/10.1137/0913001

C.C. Cheny, Introduction to Approximation Theory, McGraw Hill, New York, 1996.

S. Dahlke, M. Fornasier and T. Raasch, Adaptive frame methods for elliptic operator equations, Advances in comp. Math., 27 (2007), pp. 27-63. DOI: https://doi.org/10.1007/s10444-005-7501-6

I. Daubechies, G. Teschke and L. Vese, Iteratively solving linear inverse problems under general convex constraints, Inverse Probl. Imaging, 1 (2007), pp. 29-46. DOI: https://doi.org/10.3934/ipi.2007.1.29

H. Jamali and M. Kolahdouz, Using frames in steepest descent-based iteration method for solving operator equations, Sahand Commun. Math. Anal., 18 (2021), pp. 97-109. https://doi.org/10.22130/scma.2020.123786.771

H. Jamali and M. Kolahdouz, Some iterative methods for solving operator equations by using fusion frames, Filomat, 36 (2022), pp. 1955-1965. https://doi.org/10.2298/fil2206955j DOI: https://doi.org/10.2298/FIL2206955J

H. Jamali and R. Pourkani, Using frames in GMRES-based iteration method for solving operator equations, JMMRC, 13(2023) no.2, pp. 107-119.

C.T. Kelley, A fast multilevel algorithm for integral equations, SIAM J. Numer. Anal., 32 (1995), pp. 501-513. DOI: https://doi.org/10.1137/0732021

C.T. Kelley and E.W. Sachs, Multilevel algorithms for constrained compact fixed point problems, SIAM J. Sci. Comput., 15 (1994), pp. 645-667. https://doi.org/10.1137/0915042 DOI: https://doi.org/10.1137/0915042

R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, 2007. DOI: https://doi.org/10.1137/1.9780898717839

Y. Saad, Iterative methods for Sparse Linear Systems, PWS press, New York, 2000. DOI: https://doi.org/10.1016/S1570-579X(01)80025-2

Y. Saad, Iterative methods for Sparse Linear Systems(2nd ed.), SIAM, 2011.

Downloads

Published

2024-12-18

Issue

Section

Articles

How to Cite

Jamali, H., & Pourkani, R. (2024). A new preconditioned Richardson iterative method. J. Numer. Anal. Approx. Theory, 53(2), 242-258. https://doi.org/10.33993/jnaat532-1430