Controlling numerical diffusion in solving advection-dominated transport problems
DOI:
https://doi.org/10.33993/jnaat531-1438Keywords:
Advection-dominated transport, Numerical diffusion, Finite differences, Method of lines, Global random walkAbstract
Numerical schemes for advection-dominated transport problems are are evaluated in a comparative study. Explicit and implicit finite difference methods are analyzed together with a global random walk algorithm in the frame of a splitting procedure. The efficiency of the methods with respect to the control of the numerical diffusion is investigated numerically on one-dimensional problems with constant coefficients and two-dimensional problems with variable coefficients consisting of realizations of space-random functions.
Downloads
References
D.L. Book, C. Li, G. Patnaik and F.F. Grinstein, Quantifying residual numerical diffusion in flux-corrected transport algorithms, J. Sci. Comp. 6(3) (1991), 323–243. https://dx.doi.org/10.1007/BF01062816 DOI: https://doi.org/10.1007/BF01062816
F. Brunner, F.A. Radu, M. Bause and P. Knabner, Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media, Adv. Water Resour. 35 (2012), 163–171. https://dx.doi.org/10.1016/j.advwatres.2011.10.001 DOI: https://doi.org/10.1016/j.advwatres.2011.10.001
C.J.M. Hewett, Consistency and numerical diffusion (2021). https://www.youtube.com/watch?v=Cjb4YtgeIn0&t=263s
P. Knabner and L. Angermann, Numerical methods for elliptic and parabolic partial differential equations, Springer, New York, 2003. https://doi.org/10.1007/b97419 DOI: https://doi.org/10.1007/b97419
D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization, J. Comput. Phys. 228(7) (2009), 2517–2534. https://dx.doi.org/10.1016/j.jcp.2008.12.011 DOI: https://doi.org/10.1016/j.jcp.2008.12.011
D. Kuzmin, A. Hannukainen and S. Korotov, A new a posteriori error estimate for convection-reaction-diffusion problems, J. Comput. Appl. Math. 218(1) (2008), 70–78. https://dx.doi.org/10.1016/j.cam.2007.04.033 DOI: https://doi.org/10.1016/j.cam.2007.04.033
M. Ohlberger and C. Rohde, Adaptive finite volume approximations of weakly coupled convection dominated parabolic systems, IMA J. Numer. Anal. 22(2) (2002), 253–280. https://dx.doi.org/10.1093/imanum/22.2.253 DOI: https://doi.org/10.1093/imanum/22.2.253
F.A. Radu, N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C-H. Park and S. Attinger, Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study, Adv. Water Resour. 34 (2011), 47–61. https://dx.doi.org/10.1016/j.advwatres.2010.09.012 DOI: https://doi.org/10.1016/j.advwatres.2010.09.012
W.E. Schiesser and G.W. Griffiths, A compendium of partial differential equation models: method of lines analysis with Matlab, Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511576270 DOI: https://doi.org/10.1017/CBO9780511576270
J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004. https://doi.org/10.1137/1.9780898717938 DOI: https://doi.org/10.1137/1.9780898717938
N. Suciu, Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour. 69 (2014), 114–133. http://dx.doi.org/10.1016/j.advwatres.2014.04.002 DOI: https://doi.org/10.1016/j.advwatres.2014.04.002
N. Suciu, Diffusion in Random Fields. Applications to Transport in Groundwater, Birkhäuser, Cham, 2019. https://doi.org/10.1007/978-3-030-15081-5 DOI: https://doi.org/10.1007/978-3-030-15081-5
N. Suciu, L. Schüler, S. Attinger and P. Knabner, Towards a filtered density function approach for reactive transport in groundwater, Adv. Water Resour. 90 (2016), 83–98. https://dx.doi.org/10.1016/j.advwatres.2016.02.016 DOI: https://doi.org/10.1016/j.advwatres.2016.02.016
C. Vamoș, N. Suciu and H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comput. Phys. 186 (2003), 527–544. https://doi.org/10.1016/S0021-9991(03)00073-1 DOI: https://doi.org/10.1016/S0021-9991(03)00073-1
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nicolae Suciu, Imre Boros
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.