Exponential B-spline collocation method for singularly perturbed time-fractional delay parabolic reaction-diffusion equations
DOI:
https://doi.org/10.33993/jnaat533-1454Keywords:
Delay Parabolic reaction-diffusion, Time-fractional, Exponential B-spline Collocation MethodAbstract
The singularly perturbed time-fractional delay parabolic reaction-diffusion of initial boundary value problem is provided by the present study. Employing implicit Euler's method along with the Caputo fractional derivative, the time-fractional is discretized. Spatial domain is handled by implementing the exponential B-spline collocation technique. The converge of the method is varified and has an accuracy of \(O(N^{-2}(lnN)^{2})\). Two model examples are examined in order to examine the extent to which the scheme is effective. The findings generated by tables and figures indicate the scheme has dual layers at the end spatial domain and is uniformly convergent.
Downloads
References
R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983) no. 3, pp. 201-210. https://doi.org/10.1122/1.549724 DOI: https://doi.org/10.1122/1.549724
D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation, Water. Resour. Res., 36 (2000) no. 6, pp. 1403-1412. https://doi.org/10.1029/2000WR900031 DOI: https://doi.org/10.1029/2000WR900031
A.D. Fitt, A.R.H. Goodwin, K.A. Ronaldson and W.A. Wakeham, A fractional differential equation for a MEMS viscometer used in the oil industry, J. Comput. Appl. Math., 229 (2009) no. 2, pp. 373-381. https://doi.org/10.1016/j.cam.2008.04.018 DOI: https://doi.org/10.1016/j.cam.2008.04.018
M. Oeser and S. Freitag, Modeling of materials with fading memory using neural networks, Int. J. Numer. Methods. Eng., 78 (2009) no. 7, pp. 843-862. https://doi.org/10.1002/nme.2518 DOI: https://doi.org/10.1002/nme.2518
A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, 204, Elsevier, 2006.
C. Jadhav, T. Dale and S. Dhondge, A Review on Applications of Fractional Differential Equations in Engineering Domain, MSEA, 71 (2022) no. 4, pp. 7147-7166. https://doi.org/10.17762/msea.v71i4.1331
R. Choudhary, S. Singh and D. Kumar, A second-order numerical scheme for the time-fractional partial differential equations with a time delay, Comput. Appl. Math., 41 (2022) no. 3, 114. https://doi.org/10.1007/s40314-022-01810-9 DOI: https://doi.org/10.1007/s40314-022-01810-9
W.T. Aniley and G.F. Duressa, Nonstandard finite difference method for time-fractional singularly perturbed convection-diffusion problems with a delay in time, Results Appl. Math., 21 (2024), 100432. https://doi.org/10.1016/j.rinam.2024.100432 DOI: https://doi.org/10.1016/j.rinam.2024.100432
P. Pandey, S. Kumar, J.F. Gomez-Aguilar and D. Baleanu, An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media, Chin. J. Phys., 68 (2020), pp. 483-492. https://doi.org/10.1016/j.cjph.2020.09.031 DOI: https://doi.org/10.1016/j.cjph.2020.09.031
V. Chuk, B. Datsko and V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008) no. 1-2, pp. 215-225. https://doi.org/10.1016/j.cam.2007.08.011 DOI: https://doi.org/10.1016/j.cam.2007.08.011
J. Zhang and X. Yang, A class of efficient difference method for time fractional reaction-diffusion equation, Comput. Appl. Math., 37 (2018) no. 4, pp. 4376-4396. https://doi.org/10.1007/s40314-018-0579-5 DOI: https://doi.org/10.1007/s40314-018-0579-5
K. Van Bockstal, M.A. Zaky and A.S. Hendy, On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with delay, Commun. Nonlinear Sci. Numer. Simul., 115 (2022), 106755.https://doi.org/10.1016/j.cnsns.2022.106755 DOI: https://doi.org/10.1016/j.cnsns.2022.106755
T. Hamadneh, Z. Chebana, I. Abu Falahah, Y.A. Al-Khassawneh, A. Al-Husban, T.E. Oussaeif and A. Abbes, On finite-time blow-up problem for nonlinear fractional reaction-diffusion equation: analytical results and numerical simulations, Fractal Fract., 7 (2023) no. 8, 589. https://doi.org/10.3390/fractalfract7080589 DOI: https://doi.org/10.3390/fractalfract7080589
N.T. Negero, A robust fitted numerical scheme for singularly perturbed parabolic reaction-diffusion problems with a general time delay, Results Phys., 51 (2023), 106724. https://doi.org/10.1016/j.rinp.2023.106724 DOI: https://doi.org/10.1016/j.rinp.2023.106724
A.R. Ansari, S.A. Bakr and G.I. Shishkin, A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations, J. Comput. Appl. Math., 205 (2007) no. 1, pp. 552-566. https://doi.org/10.1016/j.cam.2006.05.032
J.J. Miller, E. O’riordan, and G.I. Shishkin, Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World scientific, 1996. DOI: https://doi.org/10.1142/2933
A.R. Ansari, S.A. Bakr and G.I. Shishkin, A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations, J. Comput. Appl. Math., 205 (2007) no. 1, pp. 552-566. https://doi.org/10.1016/j.cam.2006.05.032 DOI: https://doi.org/10.1016/j.cam.2006.05.032
R.N. Rao and P.P. Chakravarthy, A fitted Numerov method for singularly perturbed parabolic partial differential equation with a small negative shift arising in control theory, Numer. Math-Theory M.E., 7 (2014) no. 1, pp. 23-40. https://doi.org/10.1017/S1004897900000271 DOI: https://doi.org/10.4208/nmtma.2014.1316nm
F.W. Gelu and G.F. Duressa, A uniformly convergent collocation method for singularly perturbed delay parabolic reaction-diffusion problem, Abstr. Appl. Anal., 2021 (2021), pp. 1-11. https://doi.org/10.1155/2021/8835595 DOI: https://doi.org/10.1155/2021/8835595
E.A. Megiso, M.M. Woldaregay and T.G. Dinka, Fitted tension spline method for singularly perturbed time delay reaction diffusion problems, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/8669718 DOI: https://doi.org/10.1155/2022/8669718
A.A. Tiruneh, G.A. Derese and D.M. Tefera, A nonstandard fitted operator method for singularly perturbed parabolic reaction-diffusion problems with a large time delay, Int. J. Math. Sci., 2022 (2022), pp. 1-11. https://doi.org/10.1155/2022/5625049 DOI: https://doi.org/10.1155/2022/5625049
K. Khari and V. Kumar, Finite element analysis of the singularly perturbed parabolic reaction-diffusion problems with retarded argument, Numer. Methods Partial Differ. Equ., 38 (2022) no. 4, pp. 997-1014. https://doi.org/10.1002/num.22785 DOI: https://doi.org/10.1002/num.22785
J. Howlader, P. Mishra and K.K. Sharma, An orthogonal spline collocation method for singularly perturbed parabolic reaction-diffusion problems with time delay, J. Appl. Math., Comput., 70 (2024) no. 2, pp. 1069-1101. https://doi.org/10.1007/s12190-024-01993-w DOI: https://doi.org/10.1007/s12190-024-01993-w
B.J. McCartin, Computation of exponential splines, SIAM J. Sci. Comput., 11 (1990) no. 2, pp. 242-262. https://doi.org/10.1137/0911015 DOI: https://doi.org/10.1137/0911015
D. Radunovic, Multiresolution exponential B-splines and singularly perturbed boundary problem, Numer. Algor., 47 (2008), pp. 191–210. https://doi.org/10.1007/s11075-008-9171-1 DOI: https://doi.org/10.1007/s11075-008-9171-1
O. Ersoy, and I. Dag, The exponential cubic B-spline algorithm for Korteweg-de Vries equation, Adv. Numer. Anal., 2015 (2015) no. 1, 367056. https://doi.org/10.1155/2015/367056 DOI: https://doi.org/10.1155/2015/367056
S.C.S. Rao and M. Kumar, Exponential B-spline collocation method for self-adjoint singularly perturbed boundary value problems, Appl. Numer. Math. 58 (2008) no. 10, pp. 1572-1581. https://doi.org/10.1016/j.apnum.2007.09.008 DOI: https://doi.org/10.1016/j.apnum.2007.09.008
P.A. Selvi and N. Ramanujam, A parameter uniform difference scheme for singularly perturbed parabolic delay differential equation with Robin type boundary condition, Appl. Math. Comput., 296 (2017), pp. 101-115. https://doi.org/10.1016/j.amc.2016.10.027 DOI: https://doi.org/10.1016/j.amc.2016.10.027
C. Hall, On error bounds for spline interpolation, J. Approx. Theory, 1 (1968) no. 2, pp. 209–218. https://doi.org/10.1016/0021-9045(68)90025-7 DOI: https://doi.org/10.1016/0021-9045(68)90025-7
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Feyisa Edosa Merga, G.F. Duressa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.