Numerical analysis and stability of the Moore-Gibson-Thompson-Fourier model
DOI:
https://doi.org/10.33993/jnaat532-1486Abstract
This work is concerned the Moore-Gibson-Thompson-Fourier Model. Our contribution will consist in studying the numerical stability of the Moore-Gibson-Thompson-Fourier system. First we introduce a finite element approximation after the discretization, then we prove that the associated discrete energy decreases and later we establish a priori error estimates. Finally, we obtain some numerical simulations.
Downloads
References
Afilal Mounir, Tijani Abdul-Aziz Apalara, Abdelaziz Soufyane and Atika Radid, On the decay of MGT-viscoelastic plate with heat conduction of Cattaneo type in bounded and unbounded domains, Commun. Pure Appl. Anal., 22 (2023), pp. 212-227.https://doi.org/10.3934/cpaa.2022151 DOI: https://doi.org/10.3934/cpaa.2022151
Hizia Bounadja and Salim A. Messaoudi, A general stability result for a viscoelastic Moore–Gibson–Thompson equation in the whole space, Appl. Math. Optim., 84 (2021), pp. 509-521. https://doi.org/10.1007/s00245-021-09777-5 DOI: https://doi.org/10.1007/s00245-021-09777-5
F. Bucci, I. Lasiecka, Feedback control of the acoustic pressure in ultrasonic wave propagation, Optimization 68 (2019), pp. 1811-1854. https://doi.org/10.1080/02331934.2018.1504051 DOI: https://doi.org/10.1080/02331934.2018.1504051
F. Bucci, L. Pandolfi, On the regularity of solutions to the Moore-Gibson-Thompson equation: a perspective via wave equations with memory, J. Evol. Equ., 20 (2020), pp. 837-867. .https://doi.org/10.1007/s00028-019-00549-x DOI: https://doi.org/10.1007/s00028-019-00549-x
Campo M, Fernandez JR, Kuttler KL, Shillor M, Viano JM. Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Eng., 196 (2006) no.1, pp. 476–488. https://doi.org/10.1016/j.cma.2006.05.006 DOI: https://doi.org/10.1016/j.cma.2006.05.006
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. In: P.G. Ciarlet, J.L.Lions (eds) Handbook of Numerical Analysis, vol II, North Holland, (1991), pp. 17-352. https://doi.org/10.1016/j.jde.2020.05.043 DOI: https://doi.org/10.1016/S1570-8659(05)80039-0
M. Conti, V. Pata, M. Pellicer and R. Quintanilla, On the analyticity of the MGT-viscoelastic plate with heat conduction, Journal Differ Equ., 269 (2020), pp. 7862-7880. https://doi.org/10.1016/j.jde.2020.05.043 DOI: https://doi.org/10.1016/j.jde.2020.05.043
B. D’Acunto, A. D’Anna, P. Renno, On the motion of a viscoelastic solid in presence of a rigid wall, Z. Angew. Math. Phys., 34 (1983), pp. 421-438. https://doi.org/10.1007/BF00944706 DOI: https://doi.org/10.1007/BF00944706
G.C. Gorain, S.K. Bose, Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure, J. Optim. Theory Appl., 99 (1998), 423-442. https://doi.org/10.1023/A:1021778428222 DOI: https://doi.org/10.1023/A:1021778428222
B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), pp 971-988.
A.N. Norris, Dynamics of thermoelastic thin plates: a comparison of four theories., J. Therm. Stresses, 29 (2006), pp. 169-195.https://doi.org/10.1080/01495730500257482 DOI: https://doi.org/10.1080/01495730500257482
R. Marchand, T. McDevitt, R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral anal-ysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), pp. 1896–1929. https://doi.org/10.1002/mma.1576 DOI: https://doi.org/10.1002/mma.1576
F.K. Moore, W.E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects, J. Aerosp. Sci., 27 (1960), pp. 117-127. https://doi.org/10.2514/8.8418 DOI: https://doi.org/10.2514/8.8418
Professor Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound, Philos. Mag. Ser., 4 (1851), pp. 305-317. https://doi.org/10.1080/14786445108646736 DOI: https://doi.org/10.1080/14786445108646736
Smouk A., Radid A., Numerical approximation of the MGT system with Fourier’s law, Math. Model. Comput., 11 (2024) no 3, pp. 607-616. https://doi.org/10.23939/mmc2024.03.607 DOI: https://doi.org/10.23939/mmc2024.03.607
P.A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972. DOI: https://doi.org/10.1115/1.3422684
Published
Issue
Section
License
Copyright (c) 2024 ALI SMOUK
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.