Numerical analysis and stability of the Moore-Gibson-Thompson-Fourier model

Authors

DOI:

https://doi.org/10.33993/jnaat532-1486
Abstract views: 11

Abstract

This work is concerned the Moore-Gibson-Thompson-Fourier Model. Our contribution will consist in studying the numerical stability of the Moore-Gibson-Thompson-Fourier system. First we introduce a finite element approximation after the discretization, then we prove that the associated discrete energy decreases and later we establish a priori error estimates. Finally, we obtain some numerical simulations.

Downloads

Download data is not yet available.

References

Afilal Mounir, Tijani Abdul-Aziz Apalara, Abdelaziz Soufyane and Atika Radid, On the decay of MGT-viscoelastic plate with heat conduction of Cattaneo type in bounded and unbounded domains, Commun. Pure Appl. Anal., 22 (2023), pp. 212-227.https://doi.org/10.3934/cpaa.2022151 DOI: https://doi.org/10.3934/cpaa.2022151

Hizia Bounadja and Salim A. Messaoudi, A general stability result for a viscoelastic Moore–Gibson–Thompson equation in the whole space, Appl. Math. Optim., 84 (2021), pp. 509-521. https://doi.org/10.1007/s00245-021-09777-5 DOI: https://doi.org/10.1007/s00245-021-09777-5

F. Bucci, I. Lasiecka, Feedback control of the acoustic pressure in ultrasonic wave propagation, Optimization 68 (2019), pp. 1811-1854. https://doi.org/10.1080/02331934.2018.1504051 DOI: https://doi.org/10.1080/02331934.2018.1504051

F. Bucci, L. Pandolfi, On the regularity of solutions to the Moore-Gibson-Thompson equation: a perspective via wave equations with memory, J. Evol. Equ., 20 (2020), pp. 837-867. .https://doi.org/10.1007/s00028-019-00549-x DOI: https://doi.org/10.1007/s00028-019-00549-x

Campo M, Fernandez JR, Kuttler KL, Shillor M, Viano JM. Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Eng., 196 (2006) no.1, pp. 476–488. https://doi.org/10.1016/j.cma.2006.05.006 DOI: https://doi.org/10.1016/j.cma.2006.05.006

P.G. Ciarlet, The Finite Element Method for Elliptic Problems. In: P.G. Ciarlet, J.L.Lions (eds) Handbook of Numerical Analysis, vol II, North Holland, (1991), pp. 17-352. https://doi.org/10.1016/j.jde.2020.05.043 DOI: https://doi.org/10.1016/S1570-8659(05)80039-0

M. Conti, V. Pata, M. Pellicer and R. Quintanilla, On the analyticity of the MGT-viscoelastic plate with heat conduction, Journal Differ Equ., 269 (2020), pp. 7862-7880. https://doi.org/10.1016/j.jde.2020.05.043 DOI: https://doi.org/10.1016/j.jde.2020.05.043

B. D’Acunto, A. D’Anna, P. Renno, On the motion of a viscoelastic solid in presence of a rigid wall, Z. Angew. Math. Phys., 34 (1983), pp. 421-438. https://doi.org/10.1007/BF00944706 DOI: https://doi.org/10.1007/BF00944706

G.C. Gorain, S.K. Bose, Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure, J. Optim. Theory Appl., 99 (1998), 423-442. https://doi.org/10.1023/A:1021778428222 DOI: https://doi.org/10.1023/A:1021778428222

B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), pp 971-988.

A.N. Norris, Dynamics of thermoelastic thin plates: a comparison of four theories., J. Therm. Stresses, 29 (2006), pp. 169-195.https://doi.org/10.1080/01495730500257482 DOI: https://doi.org/10.1080/01495730500257482

R. Marchand, T. McDevitt, R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral anal-ysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), pp. 1896–1929. https://doi.org/10.1002/mma.1576 DOI: https://doi.org/10.1002/mma.1576

F.K. Moore, W.E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects, J. Aerosp. Sci., 27 (1960), pp. 117-127. https://doi.org/10.2514/8.8418 DOI: https://doi.org/10.2514/8.8418

Professor Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound, Philos. Mag. Ser., 4 (1851), pp. 305-317. https://doi.org/10.1080/14786445108646736 DOI: https://doi.org/10.1080/14786445108646736

Smouk A., Radid A., Numerical approximation of the MGT system with Fourier’s law, Math. Model. Comput., 11 (2024) no 3, pp. 607-616. https://doi.org/10.23939/mmc2024.03.607 DOI: https://doi.org/10.23939/mmc2024.03.607

P.A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972. DOI: https://doi.org/10.1115/1.3422684

Downloads

Published

2024-12-18

Issue

Section

Articles

How to Cite

Smouk, A., & Radid, A. (2024). Numerical analysis and stability of the Moore-Gibson-Thompson-Fourier model. J. Numer. Anal. Approx. Theory, 53(2), 343-356. https://doi.org/10.33993/jnaat532-1486