Higher-order approximations for space-fractional diffusion equation
DOI:
https://doi.org/10.33993/jnaat532-1501Keywords:
Fractional derivatives, Grünwald approximation, Unified explicit form, Space Fractional diffusion equationAbstract
Second-order and third-order finite difference approximations for fractional derivatives are derived from a recently proposed unified explicit form. The Crank-Nicholson schemes based on these approximations are applied to discretize the space-fractional diffusion equation. We theoretically analyse the convergence and stability of the Crank-Nicholson schemes, proving that they are unconditionally stable. These schemes exhibit unconditional stability and convergence for fractional derivatives of order in the range . Numerical examples further confirm the convergence order and unconditional stability of the approximations, demonstrating their effectiveness in practice.
Downloads
References
J. S. Jacob, J. H. Priya and A. Karthika, Applications of fractional calculus in science and engineering, J. Crit. Rev, 7 (2020) no. 13, pp. 4385-4394. https://www.jcreview.com/admin/Uploads/Files/624890460526e8.90194993.pdf
H. M. Nasir and K. Nafa, Algebraic construction of a third order difference approximation for fractional derivatives and applications, ANZIAM Journal, 59 (2018) no. EMAC2017, pp. C231-C245. https://doi.org/10.21914/anziamj.v59i0.1259 DOI: https://doi.org/10.21914/anziamj.v59i0.12592
H. M. Nasir and K. Nafa, A new second order approximation for fractional derivatives with applications, SQU Journal of Science, 23 (2018) no. 1, pp. 43-55. https://doi.org/10.24200/squjs.vol23iss1pp43-55 DOI: https://doi.org/10.24200/squjs.vol23iss1pp43-55
C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986) no. 3, pp. 704-719. https://doi.org/10.1137/0517050 DOI: https://doi.org/10.1137/0517050
I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
A. Akg¨ul and S. H. A. Khoshnaw , Application of fractional derivative on non-linear biochemical reaction models, Int. J. Intell. Netw., 1 (2020), pp. 52-58. https://doi.org/10.1016/j.ijin.2020.05.001 DOI: https://doi.org/10.1016/j.ijin.2020.05.001
M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations, J. Comput. Appl. Math., 172 (2004) no. 1, pp. 65-77. https://doi.org/10.1016/j.cam.2004.01.033 DOI: https://doi.org/10.1016/j.cam.2004.01.033
W.A. Gunarathna, H.M. Nasir and W.B. Daundasekera, An explicit form for higher order approximations of fractional derivatives, Appl. Numer. Math., 143 (2019), pp. 51-60. https://doi.org/10.1016/j.apnum.2019.03.017 DOI: https://doi.org/10.1016/j.apnum.2019.03.017
F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7 (1996) no. 9, pp. 1461-1477. https://doi.org/10.1016/0960-0779(95)00125-5 DOI: https://doi.org/10.1016/0960-0779(95)00125-5
R.L. Bagley and P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983) no. 3, pp. 201-210. https://doi.org/10.1122/1.549724 DOI: https://doi.org/10.1122/1.549724
B.M. Vinagre, I. Podlubny, A. Hernandez and V Feliu, Some approximations of fractional order operators used in control theory and applications, Fractional calculus and applied analysis, 3 (2000) no. 3, pp. 231-248.
R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A Math. Gen., 37 (2004) no. 31, pp. R161. http://dx.doi.org/10.1088/0305-4470/37/31/R01 DOI: https://doi.org/10.1088/0305-4470/37/31/R01
W. A. Gunarathna, H. M. Nasir and W. B. Daundasekara, Quasi-compact fourth-order approximations for fractional derivatives and applications, Ceylon J. Sci., 51 (2022) no. 5, pp. 589-595. https://doi.org/10.4038/cjs.v51i5.8085 DOI: https://doi.org/10.4038/cjs.v51i5.8085
H.G. Sun, Y. Zhang, D. Baleanu, W. Chen and YQ Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), pp. 213-231. https://doi.org/10.1016/j.cnsns.2018.04.019 DOI: https://doi.org/10.1016/j.cnsns.2018.04.019
Y. Zhang, H.G. Sun, H.H. Stowell, M. Zayernouri and S.E. Hansen, A review of applications of fractional calculus in Earth system dynamics, Chaos Solitons Fractals, 102 (2017), pp. 29-46. https://doi.org/10.1016/j.chaos.2017.03.051 DOI: https://doi.org/10.1016/j.chaos.2017.03.051
A.D. Obembe, H.Y. Al-Yousef, M.E. Hossain and S.A. Abu-Khamsin, Fractional derivatives and their applications in reservoir engineering problems: A review, J. Pet. Sci. Eng., 157 (2017), pp. 312-327. https://doi.org/10.1016/j.petrol.2017.07.035 DOI: https://doi.org/10.1016/j.petrol.2017.07.035
M. Khan, A. Rasheed, M.S. Anwar and S.T.H. Shah, Application of fractional derivatives in a Darcy medium natural convection flow of MHD nanofluid, Ain Shams Eng. J., 14 (2013) no. 9. p. 102093. https://doi.org/10.1016/j.asej.2022.102093 DOI: https://doi.org/10.1016/j.asej.2022.102093
H.M. Nasir, B.L.K. Gunawardana and H.M.N.P. Abeyrathna A second order finite difference approximation for the fractional diffusion equation, Int. J. Appl. Comput. Math., 3 (2013) no. 4, pp. 237-243. https://doi.org/10.7763/ijapm.2013.v3.212 DOI: https://doi.org/10.7763/IJAPM.2013.V3.212
C. Tadjeran, M.M. Meerschaert and H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006) no. 1, pp. 205-213. https://doi.org/10.1016/j.jcp.2005.08.008 DOI: https://doi.org/10.1016/j.jcp.2005.08.008
W.Y. Tian, H. Zhou and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 84 (2015) no. 294, pp. 1703-1727. https://doi.org/10.1090/S0025-5718-2015-02917-2 DOI: https://doi.org/10.1090/S0025-5718-2015-02917-2
Z. Hao, Z. Sun and W. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281 (2015), pp. 787-805. https://doi.org/10.1016/j.jcp.2014.10.053 DOI: https://doi.org/10.1016/j.jcp.2014.10.053
C. Li and W. Deng, A new family of difference schemes for space fractional advection diffusion equation, Adv. Appl. Math. Mech., 9 (2017) no. 2, pp. 282-306. https://doi.org/10.4208/aamm.2015.m1069 DOI: https://doi.org/10.4208/aamm.2015.m1069
N.J. Ford and A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy, Numer. Algorithms, 26 (2001), pp. 333-346. https://doi.org/10.1023/A:1016601312158 DOI: https://doi.org/10.1023/A:1016601312158
N. Laskin, Fractional market dynamics, Phys. A, 287 (2000) nod. 3-4, pp. 482-492. https://doi.org/10.1016/S0378-4371(00)00387-3 DOI: https://doi.org/10.1016/S0378-4371(00)00387-3
E.K. Akg¨ul, A. Akgul and M. Yavuz, New illustrative applications of integral transforms to financial models with different fractional derivatives, Chaos Solitons Fractals, 146 (2021), pp. 110877. https://doi.org/10.1016/j.chaos.2021.110877 DOI: https://doi.org/10.1016/j.chaos.2021.110877
R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000) no. 1, pp. 1-77. https://doi.org/10.1016/S0370-1573(00)00070-3 DOI: https://doi.org/10.1016/S0370-1573(00)00070-3
R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000. https://doi.org/10.1142/9789812817747 DOI: https://doi.org/10.1142/9789812817747
A. Boukhouima, K. Hattaf, E.M. Lotfi, M. Mahrouf, D.F.M. Torres and N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos Solitons Fractals, 140 (2020), pp. 110224. https://doi.org/10.1016/j.chaos.2020.110224 DOI: https://doi.org/10.1016/j.chaos.2020.110224
E.F.D. Goufo, M. Mbehou and M.M.K. Pene, A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics, Chaos Solitons Fractals, 115 (2018), pp. 170-176. https://doi.org/10.1016/j.chaos.2018.08.003 DOI: https://doi.org/10.1016/j.chaos.2018.08.003
W.A. Gunarathna, H.M. Nasir and W.B. Daundasekera, A unified explicit form for difference formulas for fractional and classical derivatives and applications, Comput. Methods Differ. Equ., 2024. https://doi.org/10.22034/cmde.2023.58229.2459
R.H. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions, IMA J. Numer. Anal., 11 (1991) no. 3 pp. 333-345. https://doi.org/10.1093/imanum/11.3.333 DOI: https://doi.org/10.1093/imanum/11.3.333
A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Springer Science & Business Media, 37 (2010).
L. Zhao and W. Deng, A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives, Numer. Methods Partial Differential Equations, 31 (2015) no. 5, pp. 1345-1381. https://doi.org/10.1002/num.21947 DOI: https://doi.org/10.1002/num.21947
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 W Anura Gunarathna, Haniffa Mohamed Nasir
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.