Chebfun approximation to structure of positive radial solutions for a class of supercritical semi-linear Dirichlet problems

Authors

DOI:

https://doi.org/10.33993/jnaat532-1503
Abstract views: 19

Abstract

We use the Chebfun programming package to approximate numerically the structure of the set of positive radial solutions for a class of supercritical semilinear elliptic Dirichlet boundary value problems. This structure (bifurcation diagram) is provided only at the heuristic level in many important works. In this paper, we investigate this structure, as accurately as possible, for the class
of problems mentioned above taking into account the dimension of Euclidean space as well as the physical parameter involved.

Downloads

Download data is not yet available.

References

J. Bebernes, D. Eberly and W. Fulks, Solution profiles for some simple combustion models, Nonlinear Analysis-Theory Methods and Applications, 10 (1986), pp. 165-177. DOI: https://doi.org/10.1016/0362-546X(86)90044-1

A. Birkisson, T.A. Driscoll, Automatic Frechet differentiation for the numerical solution of boundary-value problems, ACM Transactions on Mathematical Software, 38 pp. 1-39 https:doi.org/10.1145/2331130.2331134 DOI: https://doi.org/10.1145/2331130.2331134

C.C. Chen and C.-S. Lin, Uniqueness of the ground state solutions of ∆u + f (u) = 0 in Rn, n = 2, 3, Comm. Partial Differential Equations, 16 (1991), pp. 1549-1572. DOI: https://doi.org/10.1080/03605309108820811

I.M. Gelfand, Some problems in the theory of quasilinear equations, Am. Math. Soc. Transl. 29, (1963) pp. 295-381. DOI: https://doi.org/10.1090/trans2/029/12

C.I. Gheorghiu, Chebfun Solutions to a Class of 1D Singular and Nonlinear Boundary Value Problems, Computation, 10 (2022) 116. https://doi.org/10.3390/computation10070116 DOI: https://doi.org/10.3390/computation10070116

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), pp. 209-243. https://doi.org/10.1007/BF01221125 DOI: https://doi.org/10.1007/BF01221125

D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), pp. 211-269 https://doi.org/10.1007/BF00250508. DOI: https://doi.org/10.1007/BF00250508

J.S. McGough, Numerical continuation and the Gelfand problem, Appl. Math. Comput., 89 (1998), pp. 225-239. https://doi.org/10.1016/S0096-3003(97)81660-8 DOI: https://doi.org/10.1016/S0096-3003(97)81660-8

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II, J. Differ. Equations, 158 (1999), pp. 94-151 https://doi.org/10.1016/S0022-0396(99)80020-5 DOI: https://doi.org/10.1016/S0022-0396(99)80020-5

J.R. Parks, Criticality criteria for various configurations of a self-heating chemical as functions of activation energy and temperature of assembly, J. Chem. Phys., 34 (1960), pp. 46-50. https://doi.org/10.1063/1.1731612 DOI: https://doi.org/10.1063/1.1731612

L.N. Trefethen, A. Birkisson, T.A. Driscoll, Exploring ODEs, SIAM, Philadelphia, 2018. DOI: https://doi.org/10.1137/1.9781611975161

Downloads

Published

2024-12-18

Issue

Section

Articles

How to Cite

Gheorghiu, C. I. (2024). Chebfun approximation to structure of positive radial solutions for a class of supercritical semi-linear Dirichlet problems. J. Numer. Anal. Approx. Theory, 53(2), 233-241. https://doi.org/10.33993/jnaat532-1503