Additive operator splitting scheme for a general mean curvature flow and application in edges enhancement

Authors

  • Rafaa Chouder University of M'sila, Algeria
  • Noureddine Benhamidouche University of M'sila, Algeria

DOI:

https://doi.org/10.33993/jnaat532-1504

Keywords:

Nonlinear diffusion equations - Mean curvature flow - Additive operator splitting - Unconditionally stable schemes - Edge enhancement.
Abstract views: 15

Abstract

Many models that use non-linear partial differential equations (PDEs) have been extensively applied for different tasks in image processing. Among these PDE-based approaches, the mean curvature flow filtering has impressive results, for which feature directions in the image are important. In this paper, we explore a general model of mean curvature flow, as proposed in [4, 5]. The model
can be re-arranged to a reaction-diffusion form, facilitating the creation of an unconditionally stable semi-implicit scheme for image filtering. The method employs the Additive Operator Split (AOS) technique. Experiments demonstrated that the modified general model of mean curvature flow is highly effective for reducing noise and has a superior job of preserving edges.

Downloads

Download data is not yet available.

References

H. Achour, R. Chouder. N. Benhamidouche, Self-similar solutions for a new free-boundary problem and image contour enhancement, Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications & Algorithms, 31 (2024), pp. 321-337. https://online.watsci.org/abstract_pdf//2024v31/v31n5b-pdf/3.pdf

L. Alvarez, P.L. Lions, J.M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, II, SIAM J. Numer. Anal., 29 (1992), pp. 845-866. https://doi.org/10.1137/0729052 DOI: https://doi.org/10.1137/0729052

G. Aubert, and P. Kornprobst, Mathematical Problems in Image Processing - Partial Differential Equations and the Calculus of Variations, Springer, Berlin, 2002. DOI: https://doi.org/10.1007/b97428

G.I. Barenblatt, Self-similar intermediate asymptotics for nonlinear degenerate parabolic free-boundary problems that occur in image processing, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001) no. 23, pp. 12878-12881. https://doi.org/10.1073/pnas.241501698 DOI: https://doi.org/10.1073/pnas.241501698

G.I. Barenblatt and J.L. Vazquez, Nonlinear diffusion and image contour enhancement, Interfaces and Free Boundaries, 6 (2003) no. 1, pp. 31-54. https://doi.org/10.4171/IFB/90 DOI: https://doi.org/10.4171/ifb/90

S. Benalia and M. Hachama, A nonlocal method for image shadow removal, Computers & Mathematics with Applications, 107 (2022), pp. 95-103. https://doi.org/10.1016/j.camwa.2021.12.023 DOI: https://doi.org/10.1016/j.camwa.2021.12.023

N. Benhamidouche, Exact solutions to some nonlinear PDEs, travelling profiles method, Electronic Journal of Qualitative Theory of Differential Equations, (2008), pp. 1-7. https://www.math.u-szeged.hu/ejqtde/p305.pdf DOI: https://doi.org/10.14232/ejqtde.2008.1.15

F. Cao, Geometric Curve Evolution and Image Processing, Volume 1805 of Lecture Notes in Mathematics, Springer, Berlin, 2003. DOI: https://doi.org/10.1007/b10404

V. Caselles, J.-M. Morel, G. Sapiro, and A. Tannenbaum, Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis, IEEE Trans. Image Process., 7 (1998) no. 3, pp. 269-273. https://doi.org/10.1109/TIP.1998.661176 DOI: https://doi.org/10.1109/TIP.1998.661176

R. Chouder and N. Benhamidouche, New exact solutions to nonlinear diffusion equation that occurs in image processing, International Journal of Computing Science and Mathematics, 10 (2019) no. 4, pp. 364-374. https://doi.org/10.1504/IJCSM.2019.10024353 DOI: https://doi.org/10.1504/IJCSM.2019.10024353

R. Chouder and N. Benhamidouche, Travelling profile solutions for nonlinear degenerate parabolic equation and contour enhancement in image processing, Applied Mathematics E-Notes, 18 (2018), pp. 1-12. https://www.emis.de/journals/AMEN/2018/AMEN-161013.pdf

L.C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differ. Geom., 33 (1991) no. 3, pp. 635-681. https://doi.org/10.1007/BF02921385 DOI: https://doi.org/10.4310/jdg/1214446559

M. Hachama, and F. Boutaous, A fractional osmosis model for image fusion, Advances in Computational Mathematics, 50 (2024) no. 7. DOI: https://doi.org/10.1007/s10444-023-10103-6

G. Huisken, Flow by mean curvature of convex surfaces into spheres, Journal of Differential Geometry, 20 (1984), pp. 237-266. https://doi.org/10.4310/jdg/1214438998 DOI: https://doi.org/10.4310/jdg/1214438998

M. Gage, Curve shortening makes convex curves circular, Inventions Mathematica, 76 (1984), pp. 357-364. DOI: https://doi.org/10.1007/BF01388602

M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, Journal of Differential Geometry, 23 (1986), pp. 69-96. https://doi.org/10.4310/jdg/1214439902 DOI: https://doi.org/10.4310/jdg/1214439902

R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer, New York, 2003. DOI: https://doi.org/10.1007/978-0-387-21637-9

R. Malladi and J. A. Sethian, Image processing via level set curvature flow, Proc. of Natl. Acad. of Scie., 92 (1995), pp. 7046-7050. https://doi.org/10.1073/pnas.92.15.7046 DOI: https://doi.org/10.1073/pnas.92.15.7046

R. Malladi and J. A. Sethian, Image Processing: Flows under Min/Max curvature and Mean Curvature, Graphical Models and Image Processing, 58 (1996) no. 2, pp. 127-141. DOI: https://doi.org/10.1006/gmip.1996.0011

M. Mondelli and A. Ciomaga, Finite difference schemes for MCM and AMSS, Image Processing On Line, 1 (2011). DOI: https://doi.org/10.5201/ipol.2011.cm_fds

S. J. Osher and J. A. Sethian, Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), pp. 12-49. https://doi.org/10.5201/ipol.2011.cm_fds DOI: https://doi.org/10.1016/0021-9991(88)90002-2

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990) no. 7, pp. 629-639. https://doi.org/10.1109/34.56205 DOI: https://doi.org/10.1109/34.56205

G. Rosman, L. Dascal, A. Sidi, and R. Kimmel, Efficient Beltrami image filtering via vector extrapolation methods , SIAM J. Img. Sci., 2 (2009) no. 3, pp. 858-878. https://doi.org/10.1137/080728391 DOI: https://doi.org/10.1137/080728391

G. Rosman, L. Dascal, X. C. Tai and R. Kimmel, On semi-implicit splitting schemes for the Beltrami color image filtering , J. Math. Image. Vision, 40 (2011) no. 2, pp. 199–213. https://doi.org/10.1007/s10851-010-0254-y DOI: https://doi.org/10.1007/s10851-010-0254-y

G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, Cambridge, UK, 2001. https://doi.org/10.1017/S0025557200173504 DOI: https://doi.org/10.1017/CBO9780511626319

J. A. Sethian, An Analysis of Flame Propagation, Ph. D. Dissertation, University of California, 1982.

N. Sochen, R. Kimmel and R.Malladi, From high energy physics to low level vision, LBNL Report # 39243, Lawrence Berkeley National Laboratory, University of California, Berkeley, 1996.

N. Sochen, R. Kimmel and R. Malladi, A general framework for low level vision, IEEE Transactions on Image Processing, 7 (1998) no. 3, pp. 310-318. https://doi.org/10.1109/83.661181 DOI: https://doi.org/10.1109/83.661181

J. Weickert, Anisotropic Diffusion in Image Processing, B. G. Teubner, Stuttgart, 1998.

J. Weickert, B.M. ter Haar Romeny and M.A. Viergever, Efficient and reliable scheme for nonlinear diffusion filtering, IEEE Trans on Image Processing, 7 (1998) no. 3, pp. 398-410. https://doi.org/10.1109/83.661190 DOI: https://doi.org/10.1109/83.661190

M. Welk, and J. Weickert, PDE evolutions for M-smoothers in one, two, and three dimensions, Journal of Mathematical Imaging and Vision, 42 (2021) no. 2, pp. 157-185. https://doi.org/10.1007/s10851-020-00986-1 DOI: https://doi.org/10.1007/s10851-020-00986-1

A. Yezzi, Modified curvature motion for image smoothing and enhancement, IEEE Transactions on Image Processing, 7 (1998) no. 3, pp. 345-352. https://doi.org/10.1109/83.661184 DOI: https://doi.org/10.1109/83.661184

J. Zhang, K. Chen, F. Chen and B. Yu, An efficient numerical method for mean curvature-based image registration model, East Asian Journal on Applied Mathematics, 7 (2017) no. 1, pp. 125-142. https://doi.org/10.4208/eajam.200816.031216a DOI: https://doi.org/10.4208/eajam.200816.031216a

Downloads

Published

2024-12-18

Issue

Section

Articles

How to Cite

Chouder, R., & Benhamidouche, N. . (2024). Additive operator splitting scheme for a general mean curvature flow and application in edges enhancement. J. Numer. Anal. Approx. Theory, 53(2), 218-232. https://doi.org/10.33993/jnaat532-1504