Applications of the theory of generalized Fourier transforms to Tikhonov problems
DOI:
https://doi.org/10.33993/jnaat541-1539Keywords:
SL-multiplier operators, Paley-Wiener type space, approximate inversion formulasAbstract
We define and study multiplier operators associated with the Sturm-Liouville operator involving a nonnegative function satisfying certain conditions. We introduce and study the extremal function, and we deduce approximate inversion formulas for the multipliers operators in a Paley-Wiener type space.
Downloads
References
[1] Bloom WR, Xu Z. Fourier multipliers for Lp on Chebli-Trimeche hypergroups. Proc London Math Soc. 2000;80(03):643-664. DOI: https://doi.org/10.1112/S0024611500012326
[2] Bouattour L, Trimeche K. Beurling-Hormander's theorem for the Chebli-Trimeche transform. Glob J Pure Appl Math. 2005;1(3):342-357.
[3] Chebli H. Theoreme de Paley-Wiener associe a un operateur differentiel singulier sur (0;1). J Math Pures Appl. 1979;58(1):1-19. DOI: https://doi.org/10.5802/jedp.178
[4] Daher R, Kawazoe T. Generalized of Hardy's theorem for Jacobi transform. HiroshimaJ Math. 2006;36(3):331-337. DOI: https://doi.org/10.32917/hmj/1171377076
[5] Daher R, Kawazoe T. An uncertainty principle on Sturm-Liouville hypergroups. Proc Japan Acad. 2007;83 Ser. A:167-169. DOI: https://doi.org/10.3792/pjaa.83.167
[6] Daher R, Kawazoe T, Mejjaoli H. A generalization of Miyachi's theorem. J Math Soc Japan. 2009;61(2):551-558. DOI: https://doi.org/10.2969/jmsj/06120551
[7] El Hamma M, Daher R. Generalization of Titchmarsh's theorem for the Bessel transform in the space Lp;(R+). Ann Math Sil. 2012;26:55-59.
[8] Ma R. Heisenberg inequalities for Jacobi transforms. J Math Anal Appl. 2007;332(1):155-163. DOI: https://doi.org/10.1016/j.jmaa.2006.09.044
[9] Ma R. Heisenberg uncertainty principle on Chebli-Trimeche hypergroups. Paci c J Math. 2008;235(2):289-296. DOI: https://doi.org/10.2140/pjm.2008.235.289
[10] Omri S. Local uncertainty principle for the Hankel transform. Integral Transform Spec Funct. 2010;21(9):703-712. DOI: https://doi.org/10.1080/10652461003675760
[11] Saitoh S. Best approximation, Tikhonov regularization and reproducing kernels. Kodai Math J. 2005;28(2):359-367. DOI: https://doi.org/10.2996/kmj/1123767016
[12] Saitoh S. Theory of reproducing kernels: applications to approximate solutions of bounded linear operator equations on Hilbert spaces. In book: selected papers on analysis and differential equations. Amer Math Soc Transl. 2010;230 Series 2. DOI: https://doi.org/10.1090/trans2/230/06
[13] Saitoh S, Sawano Y. Theory of reproducing kernels and applications. Developements in mathematics. 2016;44. DOI: https://doi.org/10.1007/978-981-10-0530-5
[14] Soltani F. Lp local uncertainty inequality for the Sturm-Liouville transform. CUBO A Math J. 2014;16(1):95-104. DOI: https://doi.org/10.4067/S0719-06462014000100009
[15] Soltani F. Extremal functions on Sturm-Liouville hypergroups. Complex Anal Oper Theory. 2014;8(1):311-325. DOI: https://doi.org/10.1007/s11785-013-0303-9
[16] Soltani F, Nemri A. Analytical and numerical approximation formulas for the Fourier multiplier operators. Complex Anal Oper Theory. 2015;9(1):121-138. DOI: https://doi.org/10.1007/s11785-014-0386-y
[17] Soltani F, Nemri A. Analytical and numerical applications for the Fourier multiplier operators on Rn. Appl Anal. 2015;94(8):1545-1560. DOI: https://doi.org/10.1080/00036811.2014.937432
[18] Sousa R, Guerra M, Yakubovich S. On the product formula and convolution associated with the index Whittaker transform. J Math Anal Appl. 2019;475(1):939-965. DOI: https://doi.org/10.1016/j.jmaa.2019.03.009
[19] Sousa R, Guerra M, Yakubovich S. Levy processes with respect to the Whittaker convolution. Trans Amer Math Soc. 2021;374(4):2383-2419. DOI: https://doi.org/10.1090/tran/8294
[20] Trimeche K. Transformation integrale de Weyl et theoreme de Paley-Wiener associes a un operateur differentiel singulier sur (0;1). J Math Pures Appl. 1981;60(1):(1981) 51-98.
[21] Xu Z. Harmonic analysis on Chebli-Trimeche hypergroups. Ph.D. thesis, Murdoch University, Perth, Western Australia; 1994.
[22] Zeuner H. The central limit theorem for Chebli-Trimeche hypergroups. J Theoret Probab. 1989;2(1):51-63 DOI: https://doi.org/10.1007/BF01048268
Published
Issue
Section
License
Copyright (c) 2025 Fethi Soltani, Akram Nemri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.