Some properties of the linear positive operators (III)

Authors

  • A. Lupaş Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
Abstract views: 201

Abstract

Not available.

Downloads

Download data is not yet available.

References

Fan Ky, Convex sets and their applications. Argonne National Laboratory, 1959.

Lupaş, Alexandru, Some properties of the linear positive operators. I. Mathematica (Cluj) 9 (32) 1967 77-83, MR0216217.

Lupaş, Alexandru, Some properties of the linear positive operators. II. Mathematica (Cluj) 9 (32) 1967 295-298, MR0231092.

Lupaş, A., Die Folge der Betaoperatoren. Dissertation, Stuttgart 1972.

Meyer-König, W., Zeller, K., Bernsteinsche Potenzreihen. (German) Studia Math. 19 1960 89-94, MR0111965, https://doi.org/10.4064/sm-19-1-89-94

Müller, M. W., Approximation durch lineare positive Operatoren bei gemischter Norm. Habilitationsschrift, Stuttgart 1970.

Ostrowski, Alexandre, Sur quelques applications des fonctions convexes et concaves au sens de I. Schur. (French) J. Math. Pures Appl. (9) 31, (1952). 253-292, MR0052475.

Popoviciu, T., Sur l'approximation des fonctions convexes d'ordre supérieur. Mathematica (Cluj) 10, 49-54, 1935.

Popoviciu, T., Asupra demonstraţiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare. Lucrările Sesiunii Generale Ştiinţifice Acad. RPR., 1664-1667, 1950-

Popoviciu, T., Sur le reste dans certaines formules linéaires d'approximation de l'analyse. (French) Mathematica (Cluj) 1 (24) 1959 95-142, MR0129531.

Rockafellar, R., Tyrrell Convex analysis. Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J. 1970 xviii+451 pp., MR0274683.

Schaefer, Helmut H., Topological vector spaces. Third printing corrected. Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971. xi+294 pp., MR0342978.

Temple, W. B., Stieltjes integral representation of convex functions. Duke Math. J. 21, (1954). 527-531, MR0062815, https://doi.org/10.1215/s0012-7094-54-02152-3

Volkov, V. I., On the convergence of sequences of linear positive operators in the space of continuous functions of two variables. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 115 1957 17-19, MR0094693.

Wegmuller, W., Ausgleichung durch Bernstein-Polynome. Mitt. Verein. Schweiz. Versich.-Math., 36, 15-59, 1938.

Downloads

Published

1974-02-01

How to Cite

Lupaş, A. (1974). Some properties of the linear positive operators (III). Rev. Anal. Numér. Théorie Approximation, 3(1), 47–61. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1974-vol3-no1-art7

Issue

Section

Articles