Some properties of the linear positive operators (III)
Abstract
Not available.Downloads
References
Fan Ky, Convex sets and their applications. Argonne National Laboratory, 1959.
Lupaş, Alexandru, Some properties of the linear positive operators. I. Mathematica (Cluj) 9 (32) 1967 77-83, MR0216217.
Lupaş, Alexandru, Some properties of the linear positive operators. II. Mathematica (Cluj) 9 (32) 1967 295-298, MR0231092.
Lupaş, A., Die Folge der Betaoperatoren. Dissertation, Stuttgart 1972.
Meyer-König, W., Zeller, K., Bernsteinsche Potenzreihen. (German) Studia Math. 19 1960 89-94, MR0111965, https://doi.org/10.4064/sm-19-1-89-94
Müller, M. W., Approximation durch lineare positive Operatoren bei gemischter Norm. Habilitationsschrift, Stuttgart 1970.
Ostrowski, Alexandre, Sur quelques applications des fonctions convexes et concaves au sens de I. Schur. (French) J. Math. Pures Appl. (9) 31, (1952). 253-292, MR0052475.
Popoviciu, T., Sur l'approximation des fonctions convexes d'ordre supérieur. Mathematica (Cluj) 10, 49-54, 1935.
Popoviciu, T., Asupra demonstraţiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare. Lucrările Sesiunii Generale Ştiinţifice Acad. RPR., 1664-1667, 1950-
Popoviciu, T., Sur le reste dans certaines formules linéaires d'approximation de l'analyse. (French) Mathematica (Cluj) 1 (24) 1959 95-142, MR0129531.
Rockafellar, R., Tyrrell Convex analysis. Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J. 1970 xviii+451 pp., MR0274683.
Schaefer, Helmut H., Topological vector spaces. Third printing corrected. Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971. xi+294 pp., MR0342978.
Temple, W. B., Stieltjes integral representation of convex functions. Duke Math. J. 21, (1954). 527-531, MR0062815, https://doi.org/10.1215/s0012-7094-54-02152-3
Volkov, V. I., On the convergence of sequences of linear positive operators in the space of continuous functions of two variables. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 115 1957 17-19, MR0094693.
Wegmuller, W., Ausgleichung durch Bernstein-Polynome. Mitt. Verein. Schweiz. Versich.-Math., 36, 15-59, 1938.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.