Conjugate point classification with application to Chebyshev systems

Authors

  • A. B. Németh Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
Abstract views: 226

Abstract

Not available.

Downloads

Download data is not yet available.

References

Abakumov, Ju. G., The distribution of the zeros of polynomials in a Čebyšev system. (Russian) A collection of articles on the constructive theory of functions and the extremal problems of functional analysis (Russian), pp. 3-11. Kalinin. Gos. Univ., Kalinin, 1972, MR0377371.

Abakumov, Ju. G., Čebyšev systems of four functions. (Russian) A collection of articles on the constructive theory of functions and the extremal problems of functional analysis (Russian), pp. 14-25. Kalinin. Gos. Univ., Kalinin. 1972, MR0377372.

Aramă, O., Rezultate comparative asupra unor probleme la limită polilocale pentru ecuaţii diferenţiale lineare. Studii Cerc. Mat. (Cluj) 10, 207-257, 1959 https://ictp.acad.ro/scm/journal/article/view/47.

Coppel, W. A., Disconjugacy. Lecture Notes in Mathematics, Vol. 220. Springer-Verlag, Berlin-New York, 1971. iv+148 pp., MR0460785.

Hartman, Philip, Unrestricted n-parameter families. Rend. Circ. Mat. Palermo (2) 7 1958 123-142, MR0105470, https://doi.org/10.1007/bf02854523

Hadeler, K. P., Remarks on Haar systems. J. Approximation Theory 7 (1973), 59--62, MR0342923.

Kiefer, J., Wolfowitz, J., On a theorem of Hoel and Levine on extrapolation designs. Ann. Math. Statist. 36 1965 1627-1655, MR0185769, https://doi.org/10.1214/aoms/1177699793

Levin, A. Yu., Neoscilliacia rešenii uravneniia x⁽ⁿ⁾+p₁(t)x⁽ⁿ⁻¹⁾+⋯=p_{n}(t)x=0. Uspehi Mat. Nauk 24, 43-69, 1969.

Németh, A. B., Transformations of the Chebyshev systems. Mathematica (Cluj) 8 (31) 1966 315-333, MR0213787.

Németh, A. B. About the extension of the domain of definition of the Chebyshev systems defined on intervals of the real axis. Mathematica (Cluj) 11 (34) 1969 307-310, MR0265830.

Németh, A. B., The extension of the domain of definition of the Chebyshev systems defined on intervals of the real line. Mathematica (Cluj) 11 (34) 1969 307-310.

Pólya, G., On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1922), no. 4, 312-324, MR1501228, https://doi.org/10.1090/s0002-9947-1922-1501228-5

Volkov, V. I., Some properties of Čebyšev systems. (Russian) Kalinin. Gos. Ped. Inst. Uč. Zap. 26 1958 41-48, MR0131102.

Volkov, V. I., Ob odnom obobščenii teoremy S.N. Bernšteina. Ucen. Zap. Kalin. gos. ped. inst. 69, 32-38, 1969.

Zielke, R., Zur Struktur von Tschebyscheff-Systemen. Dissertation, Konstanz, 1971.

Zielke, Roland, A remark on periodic Tchebyshev systems. Manuscripta Math. 7 (1972), 325-329, MR0322414, https://doi.org/10.1007/bf01644071

Downloads

Published

1974-02-01

How to Cite

Németh, A. B. (1974). Conjugate point classification with application to Chebyshev systems. Rev. Anal. Numér. Théorie Approximation, 3(1), 73–78. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1974-vol3-no1-art9

Issue

Section

Articles