Verkettete und freie Approximation bei Differentialgleichungen
Chained and free approximation for differential equations
Abstract
Not available.Downloads
References
Barnhill, R. E., Whiteman, J. R., Error analysis of Finite Element Methods with triangles for elliptic boundary value problems. In Whiteman [7] 83-112.
Collatz, L., Functional analysis and numerical mathematics. Translated from the German by Hansjörg Oser Academic Press, New York-London 1966 xx+473 pp., MR0205126.
Collatz, L., Discretization and chained approximation. Erscheint in Proc. Symp. Numer. Solution Diff. Equ., Dundee, Scotland 1973.
Mitchell, A. R., An Introduction to the Mathematics of the Finite Element Method. In Whiteman [7], 37-58, https://doi.org/10.1016/b978-0-12-747250-8.50006-0
Natterer, F., Werner, B., Eine Erweiterung des Maximumprinzips für den Laplaceschen Operator. (German) Numer. Math. 22 (1974), 149-155, MR0351122, https://doi.org/10.1007/bf01436729
Strang, G. Fix, George J., An analysis of the finite element method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. xiv+306 pp., MR0443377.
Whiteman, J. R., The Mathematics of finite Elements and Applications. Acad. Press, 1973.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.