Verkettete und freie Approximation bei Differentialgleichungen

Chained and free approximation for differential equations

Authors

  • L. Collatz Institut fur Angewandte Mathematik der Universitat, Hamburg, Germany
Abstract views: 201

Abstract

Not available.

Downloads

Download data is not yet available.

References

Barnhill, R. E., Whiteman, J. R., Error analysis of Finite Element Methods with triangles for elliptic boundary value problems. In Whiteman [7] 83-112.

Collatz, L., Functional analysis and numerical mathematics. Translated from the German by Hansjörg Oser Academic Press, New York-London 1966 xx+473 pp., MR0205126.

Collatz, L., Discretization and chained approximation. Erscheint in Proc. Symp. Numer. Solution Diff. Equ., Dundee, Scotland 1973.

Mitchell, A. R., An Introduction to the Mathematics of the Finite Element Method. In Whiteman [7], 37-58, https://doi.org/10.1016/b978-0-12-747250-8.50006-0

Natterer, F., Werner, B., Eine Erweiterung des Maximumprinzips für den Laplaceschen Operator. (German) Numer. Math. 22 (1974), 149-155, MR0351122, https://doi.org/10.1007/bf01436729

Strang, G. Fix, George J., An analysis of the finite element method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. xiv+306 pp., MR0443377.

Whiteman, J. R., The Mathematics of finite Elements and Applications. Acad. Press, 1973.

Downloads

Published

1974-08-01

How to Cite

Collatz, L. (1974). Verkettete und freie Approximation bei Differentialgleichungen: Chained and free approximation for differential equations. Rev. Anal. Numér. Théorie Approximation, 3(2), 151–160. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1974-vol3-no2-art4

Issue

Section

Articles