A representation for an adjoint operator

Authors

  • Stephen P. Travis Naval Underwater Systems Center, Newport, USA
Abstract views: 226

Abstract

Not available.

Downloads

Download data is not yet available.

References

Bachman, George, Narici, Lawrence, Functional analysis. Academic Press, New York-London 1966 xiv+530 pp., MR0217549.

Corduneanu, Constantin, Integral equations and stability of feedback systems. Mathematics in Science and Engineering, Vol. 104. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. ix+238 pp., MR0358245.

Dunford, N. and Schwartz, J., Linear Operators. Part. I. Interscience Inc., New York, 1957.

Natanson, I. P., Theory of functions of a real variable. Translated by Leo F. Boron with the collaboration of Edwin Hewitt. Frederick Ungar Publishing Co., New York, 1955. 277 pp., MR0067952.

Taylor, A.E., Functional analysis, John Wiley & Sons, New York, 1958.

Downloads

Published

1975-02-01

How to Cite

Travis, S. P. (1975). A representation for an adjoint operator. Anal. Numér. Théor. Approx., 4(1), 105–111. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1975-vol4-no1-art13

Issue

Section

Articles