Interpolating spline bases

Authors

  • J. Domsta Sopot, Poland
Abstract views: 270

Abstract

Not available.

Downloads

Download data is not yet available.

References

Ahlberg J.H., Nilson, E.N., Walsh, J.L., Best Approximation and Convergence Properties of Higher-Order Spline Approximation, J. Math. Mechanics 14, 231-243, (1965), https://doi.org/10.1512/iumj.1965.14.14017

Ciesielski, Z., Properties of the orthonormal Franklin system, II.Studia Math.27, 289-323, (1966), https://doi.org/10.4064/sm-27-3-289-323

Ciesielski, Z., A construction of a basis in C¹(I²), ibidem 33, 243-247, (1969), https://doi.org/10.4064/sm-33-2-243-247

Ciesielski, Z., and Domsta, J., Construction of an orthonormal basis in C^{m}(I^{d}) and Wpm(Id). Ibidem 41, 211-224, (1972), https://doi.org/10.4064/sm-41-2-211-224

Ciesielski, Z., Constructive function theory and spline systems. https://doi.org/10.4064/sm-53-3-277-302

Curry, H.B. and Schoenberg, I.J., On Polya frequency functions IV: The fundamental spline functions and their limits. J. d’Analyse Math. 17, 71-107, (1966), https://doi.org/10.1007/bf02788653

Domsta, J., A theorem on B-splines. Studia Math. 41, 291-314, (1972), https://doi.org/10.4064/sm-41-3-291-314

Radecki, J., Orthogonal basis in the space C₁(0, 1). Ididem 35, 123-163, (1970), https://doi.org/10.4064/sm-35-2-123-163

Scheonberg, I.J., Contribution to the problem of approximation of equidistant data by analytic functions. Quart. App. Math. 4, 45-99, 112-141, (1946), https://doi.org/10.1090/qam/16705

Schoenberg, I. J., On spline functions, with a supplement by T.N.E. Greville, Proc. Of the Symp. On Inequalities held August 1965 at the Wright Patterson Air Force Base, Ohio.

Schoenberg, I.J., Cardinal Interpolation and Spline Functions. J. Approximation Theory 2, 176-206, (1969), https://doi.org/10.1016/0021-9045(69)90040-9

Schonefeld, S., Schauder bases in spaces of differentiable functions. Bull. Amer. Math. Soc. 75, 586-590, (1969), https://doi.org/10.1090/s0002-9904-1969-12249-4

Schonefeld, S., A Study of Products and Sums of Schauder Bases in Banach Spaces. Dissertation, Purdue University, 1969.

Schonefeld, S., Schauder Bases in the Banach Spaces Ck(Tq), Trans. Amer. Math.Soc. 165, 309-318, (1972), https://doi.org/10.1090/s0002-9947-1972-0293375-5

Semadeni, Z., Product Schauder Basis and Approximation with Nodes in Spaces of Continuous Funcitons. Bull. Acad. Sci. Ser. Sci. Math. Astronom. Phys. 11, 387-391, (1963).

Subbotin Yu. N., Approximation by spline functions and smooth bases in C(0, 2π). Mat. Zametki 12, 43-51, (1972). (in Russian).

Downloads

Published

1976-02-01

How to Cite

Domsta, J. (1976). Interpolating spline bases. Anal. Numér. Théor. Approx., 5(1), 5–21. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1976-vol5-no1-art1

Issue

Section

Articles