Interpolating spline bases
Abstract
Not available.Downloads
References
Ahlberg J.H., Nilson, E.N., Walsh, J.L., Best Approximation and Convergence Properties of Higher-Order Spline Approximation, J. Math. Mechanics 14, 231-243, (1965), https://doi.org/10.1512/iumj.1965.14.14017
Ciesielski, Z., Properties of the orthonormal Franklin system, II.Studia Math.27, 289-323, (1966), https://doi.org/10.4064/sm-27-3-289-323
Ciesielski, Z., A construction of a basis in C¹(I²), ibidem 33, 243-247, (1969), https://doi.org/10.4064/sm-33-2-243-247
Ciesielski, Z., and Domsta, J., Construction of an orthonormal basis in C^{m}(I^{d}) and Wpm(Id). Ibidem 41, 211-224, (1972), https://doi.org/10.4064/sm-41-2-211-224
Ciesielski, Z., Constructive function theory and spline systems. https://doi.org/10.4064/sm-53-3-277-302
Curry, H.B. and Schoenberg, I.J., On Polya frequency functions IV: The fundamental spline functions and their limits. J. d’Analyse Math. 17, 71-107, (1966), https://doi.org/10.1007/bf02788653
Domsta, J., A theorem on B-splines. Studia Math. 41, 291-314, (1972), https://doi.org/10.4064/sm-41-3-291-314
Radecki, J., Orthogonal basis in the space C₁(0, 1). Ididem 35, 123-163, (1970), https://doi.org/10.4064/sm-35-2-123-163
Scheonberg, I.J., Contribution to the problem of approximation of equidistant data by analytic functions. Quart. App. Math. 4, 45-99, 112-141, (1946), https://doi.org/10.1090/qam/16705
Schoenberg, I. J., On spline functions, with a supplement by T.N.E. Greville, Proc. Of the Symp. On Inequalities held August 1965 at the Wright Patterson Air Force Base, Ohio.
Schoenberg, I.J., Cardinal Interpolation and Spline Functions. J. Approximation Theory 2, 176-206, (1969), https://doi.org/10.1016/0021-9045(69)90040-9
Schonefeld, S., Schauder bases in spaces of differentiable functions. Bull. Amer. Math. Soc. 75, 586-590, (1969), https://doi.org/10.1090/s0002-9904-1969-12249-4
Schonefeld, S., A Study of Products and Sums of Schauder Bases in Banach Spaces. Dissertation, Purdue University, 1969.
Schonefeld, S., Schauder Bases in the Banach Spaces Ck(Tq), Trans. Amer. Math.Soc. 165, 309-318, (1972), https://doi.org/10.1090/s0002-9947-1972-0293375-5
Semadeni, Z., Product Schauder Basis and Approximation with Nodes in Spaces of Continuous Funcitons. Bull. Acad. Sci. Ser. Sci. Math. Astronom. Phys. 11, 387-391, (1963).
Subbotin Yu. N., Approximation by spline functions and smooth bases in C(0, 2π). Mat. Zametki 12, 43-51, (1972). (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.