Linear positive operators generated by functions
Abstract
Not available.Downloads
References
Baskakov, V. A., An instance of a sequence of linear positive operators in the space of continuous functions. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 113 1957 249-251, MR0094640.
Bernstein, S.N., Détermination du théoreme de Weierstrass fondée sur le calcul de probabilités. Comm. of the Kharkov Math. Soc., 13, 1-2, 1912.
Mirakyan, G., Approximation des fonctions continues au moyen de polynômes de la forme e-nx∑k=0mCk,nχk. (French) C. R. (Doklady) Acad. Sci. URSS (N.S.) 31, (1941). 201-205, MR0004343.
Schurer, Frans, On linear positive operators in approximation theory. Dissertation, Technological University of Delft, 1965 Uitgeverij Waltman, Delft 1965 79 pp., MR0206571.
Sikkema, P. C., Uber die Schurerschen linearen positiven Operatoren. I. (German) Nederl. Akad. Wetensch. Proc. Ser. A 78=Indag. Math. 37 (1975), 230-242, MR0374766 https://doi.org/10.1016/1385-7258(75)90037-2
Sikkema, P. C. Uber die Schurerschen linearen positiven Operatoren. II. (German) Nederl. Akad. Wetensch. Proc. Ser. A 78 Indag. Math. 37 (1975), 243-253, MR0374767.???
Sikkema, P. C. Uber die Schurerschen linearen positiven Indag. Math. (in print).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.